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Goldstein	Classical	Mechanics	NotesMichael	Good	May	30,	2004	1	1.1	Chapter	1:	Elementary	Principles	Mechanics	of	a	Single	Particle	Classical	mechanics	incorporates	special	relativity.	‘Classical’	refers	to	the	contradistinction	to	‘quantum’	mechanics.	Velocity:	v=	Linear	momentum:	p	=	mv.	dp	.	dt	In	most	cases,	mass	is	constant	and	force	is
simplified:	F=	F=	Acceleration:	d2	r	.	dt2	Newton’s	second	law	of	motion	holds	in	a	reference	frame	that	is	inertial	or	Galilean.	a=	Angular	Momentum:	L	=	r	×	p.	Torque:	T	=	r	×	F.	Torque	is	the	time	derivative	of	angular	momentum:	d	dv	(mv)	=	m	=	ma.	dt	dt	Force:	dr	.	dt	1	T=	Work:	dL	.	dt	2	W12	=	1	F	·	dr.	In	most	cases,	mass	is	constant	and
work	simplifies	to:	W12	=	m	2	dv	dv	·	vdt	=	m	v·	dt	=	m	dt	dt	1	1	m	2	2	W12	=	(v2	−	v1	)	=	T2	−	T1	2	2	2	v	·	dv	1	Kinetic	Energy:	mv	2	2	The	work	is	the	change	in	kinetic	energy.	T	=	A	force	is	considered	conservative	if	the	work	is	the	same	for	any	physically	possible	path.	Independence	of	W12	on	the	particular	path	implies	that	the	work	done
around	a	closed	ciruit	is	zero:	F	·	dr	=	0	If	friction	is	present,	a	system	is	non-conservative.	Potential	Energy:	F	=	−	V	(r).	The	capacity	to	do	work	that	a	body	or	system	has	by	viture	of	is	position	is	called	its	potential	energy.	V	above	is	the	potential	energy.	To	express	work	in	a	way	that	is	independent	of	the	path	taken,	a	change	in	a	quantity	that
depends	on	only	the	end	points	is	needed.	This	quantity	is	potential	energy.	Work	is	now	V1	−	V2	.	The	change	is	-V.	Energy	Conservation	Theorem	for	a	Particle:	If	forces	acting	on	a	particle	are	conservative,	then	the	total	energy	of	the	particle,	T	+	V,	is	conserved.	The	Conservation	Theorem	for	the	Linear	Momentum	of	a	Particle	states	that	linear
momentum,	p,	is	conserved	if	the	total	force	F,	is	zero.	The	Conservation	Theorem	for	the	Angular	Momentum	of	a	Particle	states	that	angular	momentum,	L,	is	conserved	if	the	total	torque	T,	is	zero.	2	1.2	Mechanics	of	Many	Particles	Newton’s	third	law	of	motion,	equal	and	opposite	forces,	does	not	hold	for	all	forces.	It	is	called	the	weak	law	of
action	and	reaction.	Center	of	mass:	R=	mi	ri	=	mi	mi	ri	.	M	Center	of	mass	moves	as	if	the	total	external	force	were	acting	on	the	entire	mass	of	the	system	concentrated	at	the	center	of	mass.	Internal	forces	that	obey	Newton’s	third	law,	have	no	effect	on	the	motion	of	the	center	of	mass.	F(e)	≡	M	d2	R	=	dt2	Fi	.	i	(e)	Motion	of	center	of	mass	is
unaffected.	This	is	how	rockets	work	in	space.	Total	linear	momentum:	P=	i	mi	dri	dR	=M	.	dt	dt	Conservation	Theorem	for	the	Linear	Momentum	of	a	System	of	Particles:	If	the	total	external	force	is	zero,	the	total	linear	momentum	is	conserved.	The	strong	law	of	action	and	reaction	is	the	condition	that	the	internal	forces	between	two	particles,	in
addition	to	being	equal	and	opposite,	also	lie	along	the	line	joining	the	particles.	Then	the	time	derivative	of	angular	momentum	is	the	total	external	torque:	dL	=	N(e)	.	dt	Torque	is	also	called	the	moment	of	the	external	force	about	the	given	point.	Conservation	Theorem	for	Total	Angular	Momentum:	L	is	constant	in	time	if	the	applied	torque	is	zero.
Linear	Momentum	Conservation	requires	weak	law	of	action	and	reaction.	Angular	Momentum	Conservation	requires	strong	law	of	action	and	reaction.	Total	Angular	Momentum:	L=	i	ri	×	pi	=	R	×	M	v	+	i	ri	×	pi	.	3	plus	the	K.	of	motion	about	the	center	of	mass.	has	two	parts:	the	K.	think	particle	placed	on	surface	of	a	sphere	because	it	will
eventually	slide	down	part	of	the	way	but	will	fall	off.	plus	the	angular	momentum	of	motion	about	the	center	of	mass.	.Total	angular	momentum	about	a	point	O	is	the	angular	momentum	of	motion	concentrated	at	the	center	of	mass.	1.	•	nonholonomic	constraints:	think	walls	of	a	gas	container..	The	term	on	the	right	is	called	the	internal	potential
energy.	not	moving	along	the	curve	of	the	sphere.	i.	like	angular	momentum.	1..	rheonomous	constraints:	time	is	an	explicit	variable.	Total	Work:	W12	=	T2	−	T1	where	T	is	the	total	kinetic	energy	of	the	system:	T	=	Total	kinetic	energy:	T	=	1	2	2	mi	vi	=	i	1	2	i	2	mi	vi	.	1	1	M	v2	+	2	2	mi	vi2	..	r2	.	If	the	center	of	mass	is	at	rest	wrt	the	origin	then	the
angular	momentum	is	independent	of	the	point	of	reference.	think	a	particle	constrained	to	move	along	any	curve	or	on	a	given	surface.j	i=j	If	the	external	and	internal	forces	are	both	derivable	from	potentials	it	is	possible	to	define	a	total	potential	energy	such	that	the	total	energy	T	+	V	is	conserved.	For	rigid	bodies	the	internal	potential	energy	will
be	constant.example:	bead	on	rigid	curved	wire	fixed	in	space	Difficulties	with	constraints:	4	..	scleronomous	constraints:	equations	of	contraint	are	NOT	explicitly	dependent	on	time..	For	a	rigid	body	the	internal	forces	do	no	work	and	the	internal	potential	energy	remains	constant.E.	Total	potential	energy:	V	=	i	Vi	+	1	2	Vij	.	i	Kinetic	energy.E.3
Constraints	•	holonomic	constraints:	think	rigid	body.	t)	=	0.	obtained	if	all	the	mass	were	concentrated	at	the	center	of	mass...example:	bead	on	moving	wire	2.	r3	.	think	f	(r1	.	and	no	friction	systems.	2.	For	holonomic	constraints	introduce	generalized	coordinates.	This	is	the	only	restriction	on	the	nature	of	the	constraints:	workless	in	a	virtual
displacement.	The	result	is:	{[	d	∂T	∂T	(	)−	]	−	Qj	}δqj	=	0	dt	∂	qj	˙	∂qj	5	.	Quanities	with	with	dimensions	of	energy	or	angular	momentum.	1.	Two	angles	for	a	double	pendulum	moving	in	a	plane.	For	nonholonomic	constraints	equations	expressing	the	constraint	cannot	be	used	to	eliminate	the	dependent	coordinates.	Generalized	coordinates	are
worthwhile	in	problems	even	without	constraints.	Two	angles	expressing	position	on	the	sphere	that	a	particle	is	constrained	to	move	on.	This	is	called	a	transformation.	Once	we	have	the	expression	in	terms	of	generalized	coordinates	the	coefficients	of	the	δqi	can	be	set	separately	equal	to	zero.	Equations	of	motion	are	not	all	independent.	like	rigid
body	systems.	and	must	be	obtained	from	solution.	3.	Degrees	of	freedom	are	reduced.1.	This	is	again	D’Alembert’s	principle	for	the	motion	of	a	system.4	D’Alembert’s	Principle	and	Lagrange’s	Equations	dpi	)	·	δri	=	0	dt	Developed	by	D’Alembert.	This	is	great	news.	the	principle	that:	(Fi	i	(a)	−	This	is	valid	for	systems	which	virtual	work	of	the	forces
of	constraint	vanishes.	Amplitudes	in	a	Fourier	expansion	of	rj	.	Examples	of	generalized	coordinates:	1.	going	from	one	set	of	dependent	variables	to	another	set	of	independent	variables.	Use	independent	variables.	and	what	is	good	about	it	is	that	the	forces	of	constraint	are	not	there.	The	generalized	coordinates	are	independent	of	each	other	for
holonomic	constraints.	Transform	this	equation	into	an	expression	involving	virtual	displacements	of	the	generalized	coordinates.	but	it	is	not	yet	in	a	form	that	is	useful	for	deriving	equations	of	motion.	because	coordinates	are	no	longer	all	independent	2.	Forces	are	not	known	beforehand.	and	thought	of	first	by	Bernoulli.	eliminate	dependent
coordinates.	Nonholonomic	constraints	are	HARDER	TO	SOLVE.	4.	and	L	contains	the	potential	of	the	conservative	forces	as	before.	Friction	is	commonly.	For	a	charge	mvoing	in	an	electric	and	magnetic	field.	and	notice	they	are	identical	component	wise:	m¨	=	q[Ex	+	(v	×	B)x	].	L=T	−U	where	U	is	the	generalized	potential	or	velocity-dependent
potential.	If	you	remember	the	individual	coefficients	vanish.	dt	∂	qj	˙	∂qj	where	Qj	represents	the	forces	not	arising	from	a	potential.	the	Lorentz	force	dictates:	F	=	q[E	+	(v	×	B)].	the	electromagnetic	field.	Ff	x	=	−kx	vx	.	Rayleigh’s	dissipation	function:	Fdis	=	1	2	2	2	2	(kx	vix	+	ky	viy	+	kz	viz	).	x	If	frictional	forces	are	present(not	all	the	forces
acting	on	the	system	are	derivable	from	a	potential).	and	forgive	me	for	skipping	some	steps.	The	equation	of	motion	can	be	dervied	for	the	x-dirction.Lagrange’s	Equations	come	from	this	principle.	i	The	total	frictional	force	is:	Ff	=	−	Work	done	by	system	against	friction:	dWf	=	−2Fdis	dt	6	v	Fdis	.5	Velocity-Dependent	Potentials	and	The	Dissipation
Function	The	velocity	dependent	potential	is	important	for	the	electromagnetic	forces	on	moving	charges.	the	result	is:	∂L	d	∂L	(	)−	=0	dt	∂	qj	˙	∂qj	1.	Lagrange’s	equations	can	always	be	written:	d	∂L	∂L	(	)−	=	Qj	.	and	allow	the	forces	derivable	from	a	scaler	potential	function.	7	.	do	not	appear	in	the	Lagrangian	formulation.	∂	qj	˙	In	use.	a	single
particle	is	space(Cartesian	coordinates.	atwood’s	machine	3.	Form	L	from	them.	Simple	examples	are:	1.	They	also	cannot	be	directly	derived.	3.The	rate	of	energy	dissipation	due	to	friction	is	2Fdis	and	the	component	of	the	generalized	force	resulting	from	the	force	of	friction	is:	Qj	=	−	∂Fdis	.	Forces	of	contstraint.6	Applications	of	the	Lagrangian
Formulation	The	Lagrangian	method	allows	us	to	eliminate	the	forces	of	constraint	from	the	equations	of	motion.	Scalar	functions	T	and	V	are	much	easier	to	deal	with	instead	of	vector	forces	and	accelerations.	2.	Procedure:	1.	Solve	for	the	equations	of	motion.	Write	T	and	V	in	generalized	coordinates.	Plane	polar	coordinates)	2.	a	bead	sliding	on	a
rotating	wire(time-dependent	constraint).	Put	L	into	Lagrange’s	Equations	4.	dt	∂	qj	˙	∂qj	∂	qj	˙	1.	both	L	and	Fdis	must	be	specified	to	obtain	the	equations	of	motion:	d	∂L	∂L	∂Fdis	(	)−	=−	.	Show	that	for	a	single	particle	with	constant	mass	the	equation	of	motion	implies	the	follwing	differential	equation	for	the	kinetic	energy:	dT	=F·v	dt	while	if	the
mass	varies	with	time	the	corresponding	equation	is	d(mT	)	=	F	·	p.	2004	1	Derivations	1.	dt	dt	2	2.j	Answer:	MR	=	mi	ri	1	.Goldstein	Chapter	1	Derivations	Michael	Good	June	27.	d(mT	)	d	p2	˙	=	(	)	=	p	·	p	=	F	·	p.	dt	Answer:	d(	1	mv	2	)	dT	˙	=	2	=	mv	·	v	=	ma	·	v	=	F	·	v	dt	dt	with	time	variable	mass.	i.	Prove	that	the	magnitude	R	of	the	position	vector
for	the	center	of	mass	from	an	arbitrary	origin	is	given	by	the	equation:	M	2	R2	=	M	i	2	mi	ri	−	1	2	2	mi	mj	rij	.	Answer:	First.j	mi	mj	ri	·	rj	Solving	for	ri	·	rj	realize	that	rij	=	ri	−	rj	.j	3.	The	strong	law	demands	they	be	equal	and	opposite	and	lie	along	the	line	joining	the	particles.M	2	R2	=	i.	The	argument	may	be	generalized	to	a	system	with	arbitrary
number	of	particles.j	1	M	2	i	1	2	M	2	R2	=	M	i	2	mi	ri	−	1	2	2	mi	mj	rij	i.	The	equations	governing	the	individual	particles	are	˙	p1	=	F1	+	F21	˙	p2	=	F2	+	F12	(e)	(e)	2	.	The	first	equation	of	motion	tells	us	that	internal	forces	have	no	effect.	Suppose	a	system	of	two	particles	is	known	to	obey	the	equations	of	motions.	The	weak	law	demands	that	only
the	forces	be	equal	and	opposite.	thus	proving	the	converse	of	the	arguments	leading	to	the	equations	above.j	2	mi	mj	rij	i.	Square	ri	−	rj	and	you	get	2	2	2	rij	=	ri	−	2ri	·	rj	+	rj	Plug	in	for	ri	·	rj	1	2	2	2	(r	+	rj	−	rij	)	2	i	1	1	2	2	mi	mj	ri	+	mi	mj	rj	−	2	i.j	2	ri	·	rj	=	1	2	mi	r	i	+	M	2	2	mj	rj	−	j	M	2	R2	=	M	2	R2	=	1	2	2	mi	mj	rij	i.	d2	R	(e)	Fi	≡	F(e)	M	2	=	dt	i
dL	=	N(e)	dt	From	the	equations	of	the	motion	of	the	individual	particles	show	that	the	internal	forces	between	particles	satisfy	both	the	weak	and	the	strong	laws	of	action	and	reaction.j	i.	if	the	particles	satisfy	the	strong	law	of	action	and	reaction	then	they	will	automatically	satisfy	the	weak	law.	The	equations	of	constraint	for	the	rolling	disk.	so
that	the	angle	between	them	is	zero.	xn	)dxi	=	0.	For	two	particles.	A	×	B	=	ABsinθ	(e)	(e)	4.	.	i=1	A	constraint	condition	of	this	type	is	holonomic	only	if	an	integrating	function	f	(x1	.	that	is.	.	.Assuming	the	equation	of	motion	to	be	true.	xn	)	can	be	found	that	turns	it	into	an	exact	differential.	ie	the	magnitude	of	their	cross	product	is	zero.	.	Clearly
the	function	must	be	such	that	∂(f	gi	)	∂(f	gj	)	=	∂xj	∂xi	for	all	i	=	j.	.	the	internal	torque	contribution	is	r1	×	F21	+	r2	×	F12	=	r1	×	F21	+	r2	×	(−F21	)	=	(r1	−	r2	)	×	F21	=	r12	×	F21	=	0	Now	the	only	way	for	r12	×	F21	to	equal	zero	is	for	both	r12	and	F21	to	lie	on	the	line	joining	the	two	particles.	.	.	Answer:	3	.	then	˙	˙	p1	+	p2	=	F1	+	F21	+	F2	+
F12	must	give	F12	+	F21	=	0	Thus	F12	=	−F21	and	they	are	equal	and	opposite	and	satisfy	the	weak	law	of	action	and	reaction.	Show	that	no	such	integrating	factor	can	be	found	for	either	of	the	equations	of	constraint	for	the	rolling	disk.	the	internal	torque	contribution	is	null.	dx	−	a	sin	θdψ	=	0	dy	+	a	cos	θdψ	=	0	are	special	cases	of	general
linear	differential	equations	of	constraint	of	the	form	n	gi	(x1	.	.	If	the	particles	obey	dL	=	N(e)	dt	then	the	time	rate	of	change	of	the	total	angular	momentum	is	only	equal	to	the	total	external	torque.	Performing	the	same	procedure	on	the	second	equation	you	can	find	∂f	∂(f	a	cos	θ)	=	∂y	∂φ	a	cos	θ	and	f	sin	θ	=	0	4	∂f	∂f	=	∂y	∂φ	.	φ)	The	only	way	for	f
to	satisfy	this	equation	is	if	f	is	constant	and	thus	apparently	there	is	no	integrating	function	to	make	these	equations	exact.	Q	is	−a	sin	θ	and	W	is	0.	The	equations	that	are	equivalent	to	∂(f	gi	)	∂(f	gj	)	=	∂xj	∂xi	are	∂(f	P	)	∂(f	Q)	=	∂φ	∂x	∂(f	P	)	∂(f	W	)	=	∂θ	∂x	∂(f	Q)	∂(f	W	)	=	∂θ	∂φ	These	are	explicitly:	∂(f	)	∂(−f	a	sin	θ)	=	∂φ	∂x	∂(f	)	=0	∂θ	∂(−f	a	sin	θ)	=0	∂θ
Simplfying	the	last	two	equations	yields:	f	cos	θ	=	0	Since	y	is	not	even	in	this	first	equation.First	attempt	to	find	the	integrating	factor	for	the	first	equation.	the	integrating	factor	does	not	depend	on	y	and	because	of	∂f	=	0	it	does	not	depend	on	θ	either.	Thus	∂θ	f	=	f	(x.	Note	it	is	in	the	form:	P	dx	+	Qdφ	+	W	dθ	=	0	where	P	is	1.	and	φ	have	meanings
similar	to	those	in	the	problem	of	a	single	vertical	disk.	φ	and	φ	.	cos	θdx	+	sin	θdy	=	0	1	a(dφ	+	dφ	)	2	(where	θ.	(x	±	b	b	cos	θ.	The	whole	combination	rolls	without	slipping	on	a	palne.y)	are	the	corrdinates	of	a	point	on	the	axle	midway	between	the	two	wheels)	and	one	holonomic	equation	of	constraint.φ.	one	for	each	disk	˙	v	=	aφ	˙	v	=	aφ	and	two
contact	points.	Two	wheels	of	radius	a	are	mounted	on	the	ends	of	a	common	axle	of	length	b	such	that	the	wheels	rotate	independently.	5.	and	solve	for	the	equations	of	motion.	Show	that	there	are	two	nonholonomic	equations	of	constraint.	φ)	and	making	it	impossible	for	f	to	satsify	the	equations	unless	as	a	constant.	sin	θdx	−	cos	θdy	=	a	θ	=	C	−
(φ	−	φ	)	b	where	C	is	a	constant.	find	the	point	of	contact.	That	makes	me	feel	better.	Once	you	have	the	equations	of	motion.	it	was	confusing	to	me	too.	y	±	sin	θ)	2	2	5	.	and	y	component	of	position.	Answer:	The	trick	to	this	problem	is	carefully	looking	at	the	angles	and	getting	the	signs	right.	I	think	the	fastest	way	to	solve	this	is	to	follow	the	same
procedure	that	was	used	for	the	single	disk	in	the	book.	Here	the	steps	are	taken	a	bit	further	because	a	holonomic	relationship	can	be	found	that	relates	θ.	and	(x.∂f	=0	∂θ	leading	to	f	=	f	(y.	find	the	speed	of	the	disk.	from	there	its	just	slightly	tricky	algebra.	Here	goes:	We	have	two	speeds.	and	take	the	derivative	of	the	x	component.	that	is.	If	this
question	was	confusing	to	you.	Mary	Boas	says	it	is	‘not	usually	worth	while	to	spend	much	time	searching	for	an	integrating	factor’	anyways.	So	just	think	about	it.	I	also	have	the	primed	wheel	south-west	of	the	non-primed	wheel.	Make	sure	you	get	the	angles	right.The	contact	points	come	from	the	length	of	the	axis	being	b	as	well	as	x	and	y	being
the	center	of	the	axis.	Do	it	for	the	next	one	and	get:	y+	˙	b	˙	˙	cos	θθ	=	−aφ	cos	θ	2	All	of	the	derivatives	together	so	you	aren’t	confused	what	I	just	did:	y−	˙	x−	˙	x+	˙	b	˙	˙	sin	θθ	=	aφ	sin	θ	2	b	˙	˙	sin	θθ	=	aφ	sin	θ	2	b	˙	˙	y	+	cos	θθ	=	−aφ	cos	θ	˙	2	b	˙	˙	y	−	cos	θθ	=	−aφ	cos	θ	˙	2	Now	simplify	them	by	cancelling	the	dt	s	and	leaving	the	x	and	y’s	on
one	side:	6	.	This	will	give	us	the	components	of	the	velocity.	A	picture	would	help.	and	the	points	of	contact.	and	get:	x+	˙	b	˙	˙	sin	θθ	=	aφ	sin	θ	2	The	plus	sign	is	there	because	of	the	derivative	of	cos	multiplied	with	the	negative	for	the	primed	wheel	distance	from	the	center	of	the	axis.	b	d	(x	+	cos	θ)	=	vx	dt	2	x−	˙	b	˙	sin	θθ	=	v	cos(180	−	θ	−	90)	=
v	cos(90	−	θ)	=	v	cos(−90	+	θ)	=	v	sin	θ	2	b	˙	˙	x	−	sin	θθ	=	aφ	sin	θ	˙	2	Do	this	for	the	next	one.	but	I	can’t	do	that	on	latex	yet.	The	components	of	the	distance	are	cos	and	sin	for	x	and	y	repectively.	For	the	y	parts:	d	b	(y	+	sin	θ)	=	vy	dt	2	b	˙	˙	cos	θθ	=	−v	cos	θ	=	−aφ	cos	θ	2	It	is	negative	because	I	decided	to	have	axis	in	the	first	quadrent	heading
south-east.	So	now	that	we’ve	found	the	speeds.	they	were	tricky	for	me.	we	want	to	take	the	derivatives	of	the	x	and	y	parts	of	their	contact	positions.	Show	that	for	f	(t)	differentiable.b	dx	=	sin	θ[	dθ	+	adφ]	(1)	2	b	(2)	dx	=	sin	θ[−	dθ	+	adφ	]	2	b	dy	=	−	cos	θ[	dθ	+	adφ]	(3)	2	b	dy	=	−	cos	θ[−	dθ	+	adφ	]	(4)	2	Now	we	are	done	with	the	physics.	7	.	but
otherwise	arbitrary.	A	particle	moves	in	the	xy	plane	under	the	constraint	that	its	velocity	vector	is	always	directed	towards	a	point	on	the	x	axis	whose	abscissa	is	some	given	function	of	time	f	(t).	For	the	holonomic	equation	use	(1)-(2).	(1)	−	(2)	=	0	=	bdθ	+	a(dφ	−	dφ	)	a	dθ	=	−	(dφ	−	dφ	)	b	a	θ	=	−	(φ	−	φ	)	+	C	b	For	the	other	two	equations.	The
rest	is	manipulation	of	these	equations	of	motion	to	come	up	with	the	constraints.	I	started	with	b	b	(1)	cos	θ	+	(3)	sin	θ	=	cos	θ	sin	θ[	dθ	+	adφ]	−	sin	θ	cos	θ[	dθ	+	adφ]	2	2	cos	θdx	+	sin	θdy	=	0	and	(1)	+	(2)	=	2dx	=	sin	θa[dφ	+	dφ	]	(3)	+	(4)	=	2dy	=	−	cos	θa[dφ	+	dφ	]	multiply	dy	by	−	cos	θ	and	multiply	dx	by	sin	θ	to	yield	yourself	a	−	cos	θdy	=
cos2	θ	[dφ	+	dφ	]	2	2	a	sin	θdx	=	sin	θ	[dφ	+	dφ	]	2	Add	them	together	and	presto!	sin	θdx	−	cos	θdy	=	a	[dφ	+	dφ	]	2	6.	It	has	the	distance	f	(t).	Thus	the	constraint	is	nonholonomic.	8	.	˙	∂T	∂T	−2	=Q	∂q	˙	∂q	Show	this.	The	Lagrangian	equations	can	be	written	in	the	form	of	the	Nielsen’s	equations.	Answer:	The	abscissa	is	the	x-axis	distance	from	the
origin	to	the	point	on	the	x-axis	that	the	velocity	vector	is	aimed	at.	then	vy	Vy	=	vx	Vx	y(t)	dy	=	dx	x(t)	−	f	(t)	dy	dx	=	y(t)	x(t)	−	f	(t)	This	cannot	be	integrated	with	f	(t)	being	arbituary.	I	claim	that	the	ratio	of	the	velocity	vector	components	must	be	equal	to	the	ratio	of	the	vector	components	of	the	vector	that	connects	the	particle	to	the	point	on	the
x-axis.	7.	It’s	nice	to	write	the	constraint	in	this	way	because	it’s	frequently	the	type	of	setup	Goldstein	has:	ydx	+	(f	(t)	−	x)dy	=	0	There	can	be	no	integrating	factor	for	this	equation.	The	velocity	vector	components	are:	dy	dt	dx	vx	=	dt	The	vector	components	of	the	vector	that	connects	the	particle	to	the	point	on	the	x-axis	are:	vy	=	Vy	=	y(t)	Vx	=
x(t)	−	f	(t)	For	these	to	be	the	same.the	constraint	is	nonholonomic.	The	directions	are	the	same.	t).	q.	t)	=	˙	+	q+	˙	q	¨	dt	∂t	∂q	∂q	˙	Now	lets	solve	for	˙	∂T	∂q	˙	.	so	lets	plug	this	into	equation	(5).	d	∂T	∂	∂T	∂	∂T	∂	∂T	(	)=	(	)+	(	)q	+	˙	(	)¨	q	dt	∂	q	˙	∂t	∂	q	˙	∂q	∂	q	˙	∂q	∂q	˙	˙	because	T	=	T	(q.	q.	d	∂T	∂T	∂T	˙	T	≡	T	(q.	d	˙	˙	T	≡	T	(q.	you	must	not	forget	the
chain	rule.	not	forgetting	the	product	rule	˙	∂T	∂	∂T	∂T	∂T	=	[	+	q+	˙	q]	¨	∂q	˙	∂	q	∂t	˙	∂q	∂q	˙	˙	∂T	∂	∂T	∂	∂T	∂T	∂	q	˙	∂	∂T	=	+	q+	˙	+	q	¨	∂q	˙	∂	q	∂t	˙	∂	q	∂q	˙	∂q	∂	q	∂	q	∂	q	˙	˙	˙	˙	∂T	∂	∂T	∂	∂T	∂T	∂	∂T	=	+	q+	˙	+	(	)¨	q	∂q	˙	∂t	∂	q	˙	∂q	∂	q	˙	∂q	∂q	∂q	˙	˙	Now	we	have	˙	∂T	∂q	˙	.	˙	9	.	That	will	show	that	they	can	be	written	as	displayed	above.	d	∂T	∂T	∂	∂T	∂	∂T	∂T
∂	∂T	(	)+	=	+	q+	˙	+	(	)¨	q	dt	∂	q	˙	∂q	∂t	∂	q	˙	∂q	∂	q	˙	∂q	∂q	∂q	˙	˙	d	∂T	∂	∂T	∂	∂T	∂	∂T	(	)=	+	q+	˙	(	)¨	q	dt	∂	q	˙	∂t	∂	q	˙	∂q	∂	q	˙	∂q	∂q	˙	˙	Notice	that	this	is	indeed	true.Answer:	I’m	going	to	set	the	two	forms	equal	and	see	if	they	match.	lets	solve	for	T	first.	Lagrangian	Form	=	Nielsen’s	Form	˙	d	∂T	∂T	∂T	∂T	(	)−	=	−2	dt	∂	q	˙	∂q	∂q	˙	∂q	˙	∂T	∂T	d	∂T	(	)+	=
dt	∂	q	˙	∂q	∂q	˙	What	is	˙	∂T	∂q	˙	(5)	˙	you	may	ask?	Well.	q.	t)	dt	Because	d	dt	is	a	full	derivative.	.	Answer:	Let’s	directly	substitute	L	into	Lagrange’s	equations.	function	of	its	arguments..	∂	dF	d	∂	dF	−	=0	dt	∂	q	dt	˙	∂q	dt	˙	˙	d	∂F	∂F	=	dt	∂	q	˙	∂q	This	is	shown	to	be	true	because	˙	∂F	∂F	=	∂q	˙	∂q	We	have	˙	d	∂F	d	∂F	=	dt	∂	q	˙	dt	∂q	=	∂	∂F	∂	∂F	+	q	˙	∂t
∂q	∂q	∂q	=	˙	∂	∂F	∂F	∂F	[	+	q]	=	˙	∂q	∂t	∂q	∂q	10	..	∂L	d	∂L	−	=0	dt	∂	q	˙	∂q	d	∂	dF	∂	dF	(L	+	)−	(L	+	)=0	dt	∂	q	˙	dt	∂q	dt	d	∂L	∂	dF	∂L	∂	dF	[	+	]−	−	=0	dt	∂	q	˙	∂	q	dt	˙	∂q	∂q	dt	d	∂	dF	∂	dF	d	∂L	∂L	−	+	−	=0	dt	∂	q	˙	∂q	dt	∂	q	dt	˙	∂q	dt	On	the	left	we	recognized	Lagrange’s	equations.	qn	.If	L	is	a	Lagrangian	for	a	system	of	n	degrees	of	freedom	satisfying
Lagrange’s	equations.	which	we	know	equal	zero.	Now	to	show	the	terms	with	F	vanish.	t)	dt	also	satisfies	Lagrange’s	equations	where	F	is	any	arbitrary.	but	differentiable.	show	by	direct	substitution	that	L	=L+	dF	(q1	.	.	t)]	·	v	1	q	q	∂ψ	q	mv	2	−	qφ	+	A	·	v	+	+	ψ(r.	9..	qn	.	This	is	all	that	you	need	to	show	that	the	Lagrangian	is	changed	but	the
motion	is	not.	This	problem	is	now	in	the	same	form	as	before:	dF	(q1	.	.	t)	·	v]	q	˙	L	=	L	+	[ψ]	c	In	the	previous	problem	it	was	shown	that:	˙	˙	d	∂ψ	∂ψ	=	dt	∂	q	˙	∂q	For	ψ	differentiable	but	arbitrary.	L	=	T	−	V	is	a	suitable	Lagrangian.	.	but	it	is	not	the	only	Lagrangian	for	a	given	system.	The	electromagnetic	field	is	invariant	under	a	gauge
transformation	of	the	scalar	and	vector	potential	given	by	A→A+	φ→φ−	ψ(r..	L	=L+	10.	there	is	no	unique	Lagrangian).	t)	dt	And	if	you	understood	the	previous	problem.	Let	q1	.Thus	as	Goldstein	reminded	us..e.	you’ll	know	why	there	is	no	effect	on	the	motion	of	the	particle(	i.	What	effect	does	this	gauge	transformation	have	on	the	Lagrangian	of	a
particle	moving	in	the	electromagnetic	field?	Is	the	motion	affected?	Answer:	q	1	mv	2	−	qφ	+	A	·	v	2	c	Upon	the	gauge	transformation:	L=	L	=	L	=	1	∂ψ	q	1	mv	2	−	q[φ	−	]	+	[A	+	2	c	∂t	c	ψ(r.	qn	be	a	set	of	independent	generalized	coordinates	for	a	system	11	..	t)	1	∂ψ	c	∂t	where	ψ	is	arbitrary	(but	differentiable).	t)	·	v	2	c	c	∂t	c	q	∂ψ	+	L	=L+	[	c	∂t
ψ(r...	there	are	many	Lagrangians	that	may	describe	the	motion	of	a	system.	..of	n	degrees	of	freedom..	..	then	L	satisfies	Lagrange’s	equations	with	respect	to	the	s	coordinates	d	∂L	∂L	−	=0	dt	∂	sj	˙	∂sj	In	other	words..	Answer:	We	know:	∂L	d	∂L	−	=0	dt	∂	qi	˙	∂qi	and	we	want	to	prove:	d	∂L	∂L	−	=0	dt	∂	sj	˙	∂sj	∂L	∂L	If	we	put	∂	sj	and	∂sj	in	terms	of	the
q	coordinates.	i	=	1.	(Such	a	transformatin	is	called	a	point	transformation.	t)..	n.	q.)	Show	that	if	the	Lagrangian	function	is	expressed	as	a	function	of	sj	.	∂L	=	∂sj	∂L	=	∂	sj	˙	We	know:	i	∂L	∂qi	∂qi	∂sj	∂L	∂	qi	˙	∂	qi	∂	sj	˙	˙	i	∂	qi	˙	∂qi	=	∂sj	∂	sj	˙	Thus.	with	a	Lagrangian	L(q..	sj	and	t	through	the	equa˙	tion	of	transformation.	the	form	of	Lagrange’s
equations	is	invariant	under	a	point	transformation.	.	t).	∂L	=	∂	sj	˙	Plug	∂L	∂	sj	˙	i	∂L	∂qi	∂	qi	∂sj	˙	and	∂L	∂sj	into	the	Lagrangian	equation	and	see	if	they	satisfy	it:	d	[	dt	∂L	∂qi	]−[	∂	qi	∂sj	˙	12	∂L	∂qi	]=0	∂qi	∂sj	i	i	..	sn	..	then	they	can	be	˙	substitued	back	in	and	shown	to	still	satisfy	Lagrange’s	equations.	.	Suppose	we	transform	˙	to	another	set	of
independent	coordinates	s1	.	sn	by	means	of	transformation	equations	qi	=	qi	(s1	.	Pulling	out	the	summation	to	the	right	and	[	i	∂qi	∂sj	to	the	left.	13	.	we	are	left	with:	d	∂L	∂L	∂qi	−	]	=0	dt	∂	qi	˙	∂qi	∂sj	This	shows	that	Lagrangian’s	equations	are	invariant	under	a	point	transformation.	•	Derive	Lagrange’s	equations	and	find	the	generalized	force.	L=T
−V	T	=	Therefore	L=	Plug	into	the	Lagrange	equations:	d	∂L	∂L	−	=Q	dt	∂	x	˙	∂x	∂	1	mr2	ω	2	d	∂	1	mr2	ω	2	2	−	2	=Q	dt	∂(rω)	∂x	d	m(rω)	=	Q	dt	m(rω	)	=	Q	¨	1	m(rω)2	2	1	1	mv	2	=	m(rω)2	2	2	V	=0	1	.	Consider	a	uniform	thin	disk	that	rolls	without	slipping	on	a	horizontal	plane.	we	need	to	first	find	the	Lagrangian.	Answer:	To	find	Lagrangian’s
equations.	•	Discuss	the	motion	if	the	force	is	not	applied	parallel	to	the	plane	of	the	disk.	A	horizontal	force	is	applied	to	the	center	of	the	disk	and	in	a	direction	parallel	to	the	plane	of	the	disk.	2004	1	Exercises	11.Goldstein	Chapter	1	Exercises	Michael	Good	July	17.	The	velocity	of	the	disk	would	not	just	be	in	the	x-direction	as	it	is	here.	that	in
order	to	reach	the	escape	velocity	the	ratio	of	the	wight	of	the	fuel	to	the	weight	of	the	empty	rocket	must	be	almost	300!	m	Answer:	This	problem	can	be	tricky	if	you’re	not	very	careful	with	the	notation.	Answer:	1	GM	m	=	mv	2	r	2	GM	1	=	v2	r	2	Lets	plug	in	the	numbers	to	this	simple	problem:	(6.	12.	The	escape	velocity	of	a	particle	on	Earth	is	the
minimum	velocity	required	at	Earth’s	surface	in	order	that	that	particle	can	escape	from	Earth’s	gravitational	field.	me	+	mf	.	But	here	is	the	best	way	to	do	it.	such	as	θ	to	describe	the	y-axis	motion.	neglecting	atmospheric	friction.	From	the	conservation	theorme	for	potential	plus	kinetic	energy	show	that	the	escape	veolcity	for	Earth.	Show.	Rockets
are	propelled	by	the	momentum	reaction	of	the	exhaust	gases	expelled	from	the	tail.118	×	104	m/s	which	is	11.	ingnoring	the	presence	of	the	Moon.2	km/s.	Integrate	this	equation	to	obtain	v	as	a	function	of	m.	is:	dv	dm	=	−v	−	mg	dt	dt	where	m	is	the	mass	of	the	rocket	and	v’	is	the	velocity	of	the	escaping	gases	relative	to	the	rocket.	Since	these
gases	arise	from	the	raction	of	the	fuels	carried	in	the	rocket.1	km/s	and	a	mass	loss	per	second	equal	to	1/60th	of	the	intial	mass.	13.	and	finally	the	goal	is	to	find	the	ratio	of	2	.2	km/s.	Neglecting	the	resistance	of	the	atmosphere.	Defining	me	equal	to	the	empty	rocket	mass.	then	there	might	be	some	slipping.	is	11.If	the	motion	is	not	applied
parallel	to	the	plane	of	the	disk.	that	is.	and	m0	dm	dt	=	−	60	as	the	loss	rate	of	mass.	the	mass	of	the	rocket	is	not	constant.	with	v’	equal	to	2.	or	another	generalized	coordinate	would	have	to	be	introduced.	assuming	a	constant	time	rate	of	loss	of	mass.67	×	10−11	)	·	(6	×	1024	)	1	=	v2	(6	×	106	)	2	This	gives	v	=	1.	for	a	rocket	starting	initally	from
rest.	m0	is	the	intitial	rocket	mass.	the	system	is	conservative.	mf	is	the	total	fuel	mass.	but	decreases	as	the	fuel	is	expended.	Show	that	the	equation	of	motion	for	a	rocket	projected	vertically	upward	in	a	uniform	gravitational	field.	as	in	Newton’s	second	law.	The	total	force	on	the	rocket	will	be	equal	to	the	force	due	to	the	gas	escaping	minus	the
weight	of	the	rocket:	ma	=	m	d	[−mv	]	−	mg	dt	dm	dv	=	−v	−	mg	dt	dt	The	rate	of	lost	mass	is	negative.	me	v	60g	dm	+	dm	m	m0	me	m0	dv	=	−v	m0	dm	+	m	60g	dm	m0	v	=	−v	ln	v	=	−v	ln	me	60g	+	(me	−	m0	)	m0	m0	me	−	me	−	mf	me	+	60g	me	+	mf	me	+	mf	me	+	mf	mf	−	60g	me	me	+	mf	v	=	v	ln	Now	watch	this.	so.	The	velocity	is	in	the
negative	direction.	I’m	going	to	use	my	magic	wand	of	approximation.	Use	this:	dv	dm	dv	=	dm	dt	dt	Solve:	m	dv	dm	dm	=	−v	−	mg	dm	dt	dt	v	dm	dv	dm	=−	−g	dm	dt	m	dt	v	60g	dv	=−	+	dm	m	m0	Notice	that	the	two	negative	signs	cancelled	out	to	give	us	a	positive	far	right	term.	I	can	ignore	the	empty	3	.	dv	=	−	Integrating.mf	/me	to	be	about	300.
This	is	when	I	say	that	because	I	know	that	the	ratio	is	so	big.	with	the	two	negative	signs	the	term	becomes	positive.	The	total	force	is	just	ma.	07	km/s	which	is	a	more	accurate	approximation.	and	T2	is	the	kinetic	energy	about	the	center	of	mass.	Keep	these	two	parts	seperate!	Solve	for	T1	first.1	km/s	in	his	third	edition	without	checking	his
answer.	while	the	angle	θ	will	be	the	angle	from	the	z-axis.8	for	g.	T1	+	T2	=	T	Where	T1	equals	the	kinetic	energy	of	the	center	of	mass.	This	is	more	like	the	number	300	he	was	looking	for.	The	angle	φ	will	be	the	angle	in	the	x-y	plane.	realizing	that	the	rigid	rod	is	not	restricted	to	just	the	X-Y	plane.	its	the	easiest:	1	1	2	˙	˙	M	vcm	=	(2m)(aψ)2	=
ma2	ψ	2	2	2	Solve	for	T2	.	the	center	of	which	is	constrained	to	move	on	a	circle	of	radius	a.rocket	mass	as	compared	to	the	fuel	mass.	9.	mf	/me	.	Don’t	forget	the	Z-axis!	T1	=	T2	=	1	M	v	2	=	mv	2	2	Solve	for	v	2	about	the	center	of	mass.	if	Goldstein	hadn’t	just	converted	6800	ft/s	from	his	second	edition	to	2.	and	2100	m/s	for	v	.	me	α0	.	the	solution
actually	follows	more	quickly.	but	if	α	=	α0	then	only	k	≈	1.	again.	If	we	start	at	Goldstein’s	equation.	This	graph	is	arccosh(k)/k	=	α	and	looks	like	a	little	hill.This	symmetric	but	physically	equivalent	example	is	not	what	the	problem	asked	for.	no	real	values	of	k	exist.	cosh2	A	−	sinh2	A	=	1	a	more	manageable	expression	in	terms	of	k	and	α	becomes
apparent.	5	.	the	dimensional	quantities	defined	in	the	problem.	It	can	be	graphed	by	typing	acosh(x)/x	on	a	free	applet	at	If	α	<	α0	.	k=	we	have	k	=	cosh	kα	Taking	the	derivative	with	respect	to	k.ctc.html.edu/home/jkim/gcalc.81	Since	α0	=	√	1	k2	−1	⇒	α0	≈	.	1	=	α0	sinh	kα0	Using	the	hyperbolic	identity.tacoma.	but	I	think	its	interesting.	x	=	a	cosh
y	a	x	xy	=	cosh	a	ax	Using.	t)	have	been	referred	to	˙	¨	as	‘jerky’	mechanics.	qi	.	x.	we	have	δq	=	Applying	this	we	have	2	∂q	dα	∂α	δI	=	1	(	∂L	∂L	∂	q	˙	∂L	∂	q	¨	δq	+	dα	+	dα)dt	∂q	∂	q	∂α	˙	∂	q	∂α	¨	6	.	By	applying	the	mehtods	of	the	calculus	of	variations.	2	∂q	dt	¨i	dt	∂	qi	˙	∂qi	Apply	this	result	to	the	Lagrangian	k	m	qq	−	q2	¨	2	2	Do	you	recognize	the
equations	of	motion?	L=−	Answer:	If	there	is	a	Lagrangian	of	the	form	L	=	L(qi	.	Problems	for	which	triple	dot	x	=	f	(x.12	The	term	generalized	mechanics	has	come	to	designate	a	variety	of	classical	mechanics	in	which	the	Lagrangian	contains	time	derivatives	of	qi	higher	than	the	first.	qi	qi	.	In	analogy	with	the	differential	quantity..	x.	qi	.	.	Goldstein
Equation	(2.	t)dt	˙	¨	and	∂I	dα	=	∂α	2	(	1	i	∂L	∂qi	∂L	∂	qi	˙	∂L	∂	qi	¨	dα	+	dα	+	dα)dt	∂qi	∂αi	∂	qi	∂αi	˙	∂	qi	∂αi	¨	To	make	life	easier.	Chapter	11).	t).12).	qi	.	then	we	have:	2	i	=	1.	we’re	going	to	assume	the	Einstein	summation	convention.	2.	and	˙¨	Hamilton’s	principle	holds	with	the	zero	variation	of	both	qi	and	qi	at	the	end	˙	points.	I=	1	L(qi	.	then	the
corresponding	Euler-Lagrange	equations	are	d	∂L	∂L	d2	∂L	(	)−	(	)+	=	0.	Such	equations	of	motion	have	interesting	applications	in	chaos	theory	(cf.	show	that	if	there	is	a	Lagrangian	of	the	form	L(qi	..	qi	.	n.2.	as	well	as	drop	the	indexes	entirely..	t)	˙	¨	and	Hamilton’s	principle	holds	with	the	zero	variation	of	both	qi	and	qi	at	˙	the	end	points.	.	2	−	1	∂
2	q	d	∂L	d	∂L	∂q	(	)dt	=	∂t∂α	dt	∂	q	¨	dt	∂	q	∂α	¨	2	2	−	1	1	−	∂q	d2	∂L	dt	∂α	dt2	∂	q	¨	First	term	vanishes	for	the	third	time.	we	get	closer	2	δI	=	1	(	∂L	d	∂L	d2	∂L	δq	−	δq	+	2	δq)dt	∂q	dt	∂	q	˙	dt	∂	q	¨	Gathering	δq’s.	Turn	the	crank	again.	Substituting	back	in.	throwing	our	summation	sign	and	index’s	back	in.	one	by	one:	d	∂L	d2	∂L	∂L	−	+	2	=0	∂qi	dt	∂	qi
˙	dt	∂	qi	¨	7	i	=	1.	Integration	by	parts	on	the	middle	term	yields.	and	we	are	still	left	with	another	integration	by	parts	problem.	(Goldstein.The	indexes	are	invisible	and	the	two	far	terms	are	begging	for	some	mathematical	manipulation.	Eq.	.	2.	Now	the	last	term	needs	attention.	and	using	the	definition	of	our	δq.	Here	goes:	2	1	∂L	∂	q	¨	∂L	∂	2	q	dt	=
∂	q	∂α	¨	∂	q	∂t∂α	¨	2	2	−	1	1	∂	2	q	d	∂L	(	)dt	∂t∂α	dt	∂	q	¨	Where	we	used	vdu	=	uv	−	vdu	as	before.	we	have:	2	δI	=	1	(	d	∂L	∂L	∂	q	¨	∂L	δq	−	δq	+	dα)dt	∂q	dt	∂	q	˙	∂	q	∂α	¨	∂q	Where	we	used	the	definition	δq	=	∂α	dα	again.10)	and	see	that	δI	=	0	requires	that	the	coefficients	of	δqi	separately	vanish.	2.	and	applying	Hamiliton’s	principle:	2	δI	=	1	i	(	d	∂L
d2	∂L	∂L	−	+	2	)δqi	dt	=	0	∂qi	dt	∂	qi	˙	dt	∂	qi	¨	We	know	that	since	q	variables	are	independent.	and	we	have	2	1	¨	∂L	∂	q	dt	=	∂	q	∂α	¨	2	1	∂q	d2	∂L	dt	∂α	dt2	∂	q	¨	Plugging	back	in	finally.	..	The	first	term	vanishes	once	again.	in	analogy	to	Goldstein	page	44.n.	2	1	∂L	∂	2	q	∂L	∂q	dt	=	∂	q	∂α∂t	˙	∂	q	∂α	˙	2	2	−	1	1	∂q	d	∂L	(	)dt	∂α	dt	∂	q	˙	This	first	term	on
the	right	is	zero	because	the	condition	exists	that	all	the	varied	curves	pass	through	the	fixed	end	points	and	thus	the	partial	derivative	of	q	wrt	to	α	at	x1	and	x2	vanish.	This	requires	integration	by	parts	twice.	the	variations	δqi	are	independent	and	we	can	apply	the	calculus	of	variations	lemma.	The	generalized	2	force	of	constraint	is	the	Lagrange
multipliers	term	that	is	added	to	the	original	form	of	Lagrange’s	equations.	the	original	Lagrangian	can	be	obtained.	It’s	interesting	to	notice	that	if	the	familiar	Lagrangian	for	a	simple	harmonic	oscillator	(SHO)	plus	an	extra	term	is	used.	L	=	LSHO	+	L=	d	mq	q	˙	(−	)	dt	2	kq	2	d	mq	q	˙	mq	2	˙	−	+	(−	)	2	2	dt	2	kq	2	mq	q	mq	2	¨	˙	mq	2	˙	−	−	−	2	2	2	2
L=−	mq	q	kq	2	¨	−	2	2	L=	˙	d	This	extra	term.	1	k	¨	L	=	−	mq	q	−	q	2	2	2	yields	∂L	1	=	−	m¨	−	kq	q	∂q	2	−	d	∂L	=0	dt	∂	q	˙	d	d	1	d	1	1	d2	∂L	=	(	(−	mq))	=	(−	mq)	=	−	m¨	˙	q	dt2	∂	q	¨	dt	dt	2	dt	2	2	Adding	them	up:	−m¨	−	kq	=	0	q	This	is	interesting	because	this	equation	of	motion	is	just	Hooke’s	Law.	This	crazy	looking	Lagrangian	yields	the	same
equation	for	simple	harmonic	motion	using	the	‘jerky’	form	of	Lagrangian’s	equations.	8	.Applying	this	result	to	the	Lagrangian.	dt	(−	mqq	)	probably	represents	constraint.	The	particle	will	eventually	fall	off	but	while	its	on	the	hoop.	Solving	for	the	motion:	d	∂L	=	m¨	r	dt	∂	r	˙	∂L	˙	=	mrθ2	−	mg	cos	θ	∂r	∂fr	λ	=λ∗1	∂r	thus	˙	−m¨	+	mrθ2	−	mg	cos	θ	+	λ
=	0	r	solving	for	the	other	equation	of	motion.	Using	Lagrange’s	equations	with	undetermined	multipliers.	2.	a.	(at	the	top	of	the	hoop)	potential	energy	is	mgr.Homework	3:	#	2.	Answer:	The	Lagrangian	is	1	˙	m(r2	+	r2	θ2	)	−	mgr	cos	θ	˙	2	Where	r	is	the	distance	the	particle	is	away	from	the	center	of	the	hoop.13	A	heavy	particle	is	placed	at	the	top
of	a	vertical	hoop.	and	when	θ	=	90o	(at	half	of	the	hoop)	potential	energy	is	zero.	f	=	r	=	a	as	long	as	the	particle	is	touching	the	hoop.	2004	2.	Find	the	height	at	which	the	particle	falls	off.	Calculate	the	reaction	of	the	hoop	on	the	particle	by	means	of	the	Lagrange’s	undetermined	multipliers	and	Lagrange’s	equations.	This	will	be	the	constraint	on
the	particle.	1	.	L=T	−V	⇒	L=	∂L	d	∂L	−	+	∂qj	dt	∂	qj	˙	λ	k	∂fk	=0	∂qj	with	our	equation	of	constraint.14	Michael	Good	Sept	10.	r	will	equal	the	radius	of	the	hoop.	Here	when	θ	=	0.13.	θ	=	0	and	θ	=	0	at	t	=	0	so.	the	equations	of	motion	become.d	∂L	¨	=	mr2	θ	+	2mrrθ	˙˙	˙	dt	∂	θ	∂L	=	mgr	sin	θ	∂θ	∂fθ	λ	=λ∗0	∂θ	thus	¨	−mr2	θ	−	2mrrθ	+	mgr	sin	θ	=	0	˙˙
The	equations	of	motion	together	are:	˙	−m¨	+	mrθ2	−	mg	cos	θ	+	λ	=	0	r	¨	˙˙	−mr2	θ	−	2mrrθ	+	mgr	sin	θ	=	0	To	find	the	height	at	which	the	particle	drops	off.	˙	maθ2	−	mg	cos	θ	+	λ	=	0	˙	−ma2	θ	+	mga	sin	θ	=	0	Solving	for	θ.	or	by	˙	˙	˙	dθ	dθ	dθ	d	dθ	˙	dθ	¨	=	=	=θ	θ=	dt	dt	dt	dθ	dt	dθ	g	˙	˙	sin	θdθ	=	θdθ	a	˙	g	θ2	−	cos	θ	=	+	constant	a	2	˙	The
constant	is	easily	found	because	at	the	top	of	the	hoop.	2	.	The	force	of	constraint	is	λ	and	λ	=	0	when	the	particle	is	no	longer	under	the	influence	of	the	force	of	the	hoop.	the	m’s	cancel	and	1	a	cancels.	we	are	left	with	g	¨	sin	θ	=	θ	a	solving	this	and	noting	that	˙	˙	¨	θdθ	=	θdθ	by	the	‘conservation	of	dots’	law	Engel	has	mentioned	:).	λ	can	be	found	in
terms	of	θ.	With	the	angle	we	can	find	the	height	above	the	ground	or	above	the	center	of	the	hoop	that	the	particle	stops	maintaining	contact	with	the	hoop.	So	finding	λ	in	terms	of	θ	and	setting	λ	to	zero	will	give	us	the	magic	angle	that	the	particle	falls	off.	With	the	constraint.	If	we	say	the	hoop	is	a	fully	circular	and	somehow	fixed	with	the	origin	at
the	bottom	of	the	hoop.	The	only	external	force	is	that	of	gravity.	If	the	smaller	cylinder	starts	rolling	from	rest	on	top	of	the	bigger	cylinder.	use	the	method	of	Lagrange	multipliers	to	find	the	point	at	which	the	hoop	falls	off	the	cylinder.	The	second	one	comes	from	no	slipping:	rφ	=	s	→	s	=	(R	+	r)θ	rφ	−	rθ	=	Rθ	3	.2o	3	And	if	our	origin	is	at	the
center	of	the	hope.	Answer:	Two	equations	of	constraint:	ρ=r+R	r(φ	−	θ)	=	Rθ	My	generalized	coordinates	are	ρ.2g	2g	˙	cos	θ	+	=	θ2	a	a	Plug	this	into	our	first	equation	of	motion	to	get	an	equation	dependent	only	on	θ	and	λ	−	ma[−	2g	2g	cos	θ	+	]	−	mg	cos	θ	=	−λ	a	a	−3mg	cos	θ	+	2mg	=	−λ	Setting	λ	=	0	because	this	is	at	the	point	where	the
particle	feels	no	force	from	the	hoop.	then	the	height	that	it	stops	touching	the	hoop	is	just	R	cos	θ0	or	2	2	h	=	R	cos(cos−1	)	=	R	3	3	.	The	first	equation	comes	from	the	fact	that	as	long	as	the	hoop	is	touching	the	cylinder	the	center	of	mass	of	the	hoop	is	exactly	r	+	R	away	from	the	center	of	the	cylinder.	θ.	and	θ0	equals	2	θ0	=	cos−1	(	)	=	48.14	A
uniform	hoop	of	mass	m	and	radius	r	rolls	without	slipping	on	a	fixed	cylinder	of	radius	R	as	shown	in	figure.	I’m	calling	it	f1	.	then	we	have	just	moved	down	by	R	and	the	new	height	is	2	5	H	=R+	R=	R	3	3	2.	and	φ.	I’m	calling	this	equation	f2	.	So	I’m	going	to	apply	the	constraints	to	my	equations	of	motion.	This	will	tell	me	the	value	of	θ.r(φ	−	θ)	=
Rθ	Where	θ	is	the	angle	ρ	makes	with	the	vertical	and	φ	is	the	angle	r	makes	with	the	vertical.	The	constraints	tell	me:	4	.	f1	=	ρ	−	r	−	R	=	0	f2	=	Rθ	−	rφ	+	rθ	=	0	The	Lagrangian	is	T	−	V	where	T	is	the	kinetic	energy	of	the	hoop	about	the	cylinder	and	the	kinetic	energy	of	the	hoop	about	its	center	of	mass.	attempt	to	get	an	equation	for	θ.	and	then
set	λ1	equal	to	zero	because	that	will	be	when	the	force	of	the	cylinder	on	the	hoop	is	zero.	The	potential	energy	is	the	height	above	the	center	of	the	cylinder.	This	will	tell	me	the	point	that	the	hoop	drops	off	the	cylinder.	Therefore	m	2	˙	˙	(ρ	+	ρ2	θ2	+	r2	φ2	)	−	mgρ	cos	θ	˙	2	Solving	for	the	equations	of	motion:	L=	d	∂L	∂L	−	=	dt	∂	ρ	˙	∂ρ	λk	k	∂fk	∂ρ
∂f1	∂f2	˙	m¨	−	mρθ2	+	mg	cos	θ	=	λ1	ρ	+	λ2	∂ρ	∂ρ	˙	m¨	−	mρθ2	+	mg	cos	θ	=	λ1	ρ	d	∂L	∂L	−	=	˙	dt	∂	θ	∂θ	λk	k	(1)	∂fk	∂θ	d	∂f1	∂f2	˙	(mρ2	θ)	−	(−mgρ	sin	θ)	=	λ1	+	λ2	dt	∂θ	∂θ	¨	˙	˙	mρ2	θ	+	θ2mρρ	+	mgρ	sin	θ	=	λ1	(0)	+	λ2	(R	+	r)	¨	mρ2	θ	+	2mρρθ	+	mgρ	sin	θ	=	λ2	(R	+	r)	˙˙	d	∂L	∂L	=	−	˙	dt	∂	φ	∂φ	λk	k	(2)	∂fk	∂φ	d	∂f1	∂f2	˙	(mr2	φ)	−	0	=	λ1	+	λ2	dt	∂φ
∂φ	¨	mr2	φ	=	−λ2	r	(3)	I	want	the	angle	θ.	Looking	for	an	equation	in	terms	of	only	θ	and	λ1	will	put	me	in	the	right	position.	˙¨	˙	2θθ	=	−B	sin	θθ	B	¨	θ	=	−	sin	θ	2	Thus	B=−	q	R+r	˙	From	initial	conditions.	θ	=	0	at	t	=	0	we	have	A:	A	=	−B	→	A=	q	R+r	5	.	θ	=	0.	λ2	m(R	+	r)	(4)	¨	m(R	+	r)θ	+	mg	sin	θ	=	λ2	¨	λ2	−	mg	sin	θ	θ=	m(R	+	r)	Setting	(4)	=	(5)
−λ2	=	λ2	−	mg	sin	θ	mg	sin	θ	λ2	=	2	Plugging	(6)	into	(4)	yields	a	differential	equation	for	θ	¨	θ=	−g	sin	θ	2(R	+	r)	(5)	(6)	˙	If	I	solve	this	for	θ2	I	can	place	it	in	equation	of	motion	(1)	and	have	an	expression	in	terms	of	θ	and	λ1	.ρ=r+R	φ=	→	ρ=ρ=0	˙	¨	→	¨	R	+	rθ	¨	φ=	r	R+r	R+r	˙	˙	θ	→	φ=	θ	r	r	Solving	(3)	using	the	constraints.	¨	mr2	φ	=	−λ2	r	¨	θ=−
Solving	(2)	using	the	constraints.	This	differential	equation	can	be	solved	by	trying	this:	˙	θ2	=	A	+	B	cos	θ	Taking	the	derivative.	the	height	that	the	center	of	mass	of	the	hoop	falls	off	is	cos	θ0	=	1	ρ	2	Or	if	you	prefer	the	height	that	the	hoop’s	surface	stops	contact	with	cylinder:	1	h=	R	2	.Therefore	˙	θ2	=	q	q	−	cos	θ	R+r	R+r	Now	we	are	in	a
position	to	plug	this	into	equation	of	motion	(1)	and	have	the	equation	in	terms	of	θ	and	λ1	−m(R	+	r)(	q	q	−	cos	θ)	+	mg	cos	θ	=	λ1	R+r	R+r	−mg	+	2mg	cos	θ	=	λ1	mg(2	cos	θ	−	1)	=	λ1	Setting	the	force	of	constraint	equal	to	zero	will	give	us	the	angle	that	the	hoop	no	longer	feels	a	force	from	the	cylinder:	2	cos	θ0	−	1	=	0	1	→	θ0	=	60o	2	With	our
origin	at	the	center	of	the	cylinder.	hcm	=	ρ	cos(60o	)	=	6	.	Obtain	the	Lagrange	equations	of	motion	assuming	the	only	external	forces	arise	from	gravity.13.	h.	The	equations	of	motion	are	then:	L=	d	∂L	∂L	−	=0	˙	dt	∂	θ	∂θ	¨	ma2	θ	=	ma2	ω	2	sin	θ	cos	θ	+	mga	sin	θ	We	see	that	the	Lagrangian	does	not	explicitly	depend	on	time	therefore	the	energy
function.	and	the	potential	energy	is	considered	negative	at	the	bottom	of	the	hoop.	3.	w	is	constant	as	well.	and	a	is	the	radius.	What	is	the	value	of	ω0	?	Answer:	To	obtain	the	equations	of	motion.	My	θ	is	the	angle	from	the	z-axis.18	A	point	mass	is	constrained	to	move	on	a	massless	hoop	of	radius	a	fixed	in	a	vertical	plane	that	rotates	about	its
vertical	symmetry	axis	with	constant	angular	speed	ω.20	Michael	Good	Sept	20.	We	only	need	one	generalized	coordinate.	there	can	be	a	solution	in	which	the	particle	remains	stationary	on	the	hoop	at	a	point	other	than	the	bottom.	the	only	stationary	point	for	the	particle	is	at	the	bottom	of	the	hoop.	3.	because	the	radius	of	the	hoop	is	constant.
What	are	the	constants	of	motion?	Show	that	if	ω	is	greater	than	a	critical	value	ω0	.18.	we	need	to	find	the	Lagrangian.	and	the	point	mass	is	constrained	to	this	radius.14.	but	if	ω	<	ω0	.	and	zero	where	the	vertical	is	at	the	center	of	the	hoop.21.	3.	2.	˙	∂L	−	L	h=θ	˙	∂θ	˙	˙	1	˙	h	=	θma2	θ	−	ma2	(θ2	+	ω	2	sin2	θ)	−	mga	cos	θ	2	1	.	2004	2.	1	˙	ma2	(θ2
+	ω	2	sin2	θ)	−	mga	cos	θ	2	Where	the	kinetic	energy	is	found	by	spherical	symmetry.	is	conserved	(Goldstein	page	61).	while	the	angular	velocity.Homework	4:	#	2.	If	we	speed	up	this	hoop.This	simplifies	to:	1	1	˙	ma2	θ	−	(	ma2	ω	2	sin2	θ	−	mga	cos	θ)	2	2	Because	the	‘energy	function’	has	an	identical	value	to	the	Hamiltonian.	So	the	point	mass
moves	up	the	hoop.	the	bottom.	to	a	nice	place	where	it	is	swung	around	and	maintains	a	stationary	orbit.	h=	1	Vef	f	=	mga	cos	θ	−	ma2	ω	2	sin2	θ	2	The	partial	of	Vef	f	with	respect	to	θ	set	equal	to	zero	should	give	us	a	stationary	point.	θ=0	θ=π	θ	=	arccos(−	g	)	aω	2	At	the	top.	θ	=	π	is	stable.	and	is	the	only	stationary	point	for	the	particle.	ω0	=	g	a
The	top	of	the	hoop	is	unstable.	and	some	angle	that	suggests	a	critical	value	of	ω.	θ	=	arccos(−	2	.	ω	>	ω0	.	the	bottom.	our	angle	2	ω0	)	ω2	is	stable	and	θ	=	π	becomes	unstable.	Therefore	anything	ω	<	ω0	.	the	only	stable	minimum	is	at	θ	=	π.	the	effective	potential	is	the	second	term.	but	at	the	bottom	we	have	a	different	story.	If	I	set	ω	=	ω0	and
graph	the	potential.	∂Vef	f	=	mga	sin	θ	+	ma2	ω	2	sin	θ	cos	θ	=	0	∂θ	ma	sin	θ(g	+	aω	2	cos	θ)	=	0	This	yields	three	values	for	θ	to	obtain	a	stationary	point.	of	force	constant	k	and	zero	equilibrium	length.	2	V	(r.	so	I’ll	need	a	pair	of	transformation	equations	relating	the	two	frames.	y)	so	as	to	write	the	stubborn	potential	energy	in	terms	of	the	lab
frame	is	done	with	some	algebra.	l)	=	The	energy	needs	to	be	written	down	fully	in	one	frame	or	the	other.	I’ll	use	(r.	On	the	carriage.	by	drawing	a	diagram.	•	What	is	the	energy	of	the	system?	Is	it	conserved?	•	Using	generalized	coordinates	in	the	laboratory	system.	l).	held	by	a	spring	fixed	on	the	beam.	rails.	and	its	potential	energy	is	easy	to	write
down.2.	relating	(x.	with	a	constant	angular	speed	ω.	In	the	rotating	frame.	whose	other	end	is	fixed	on	the	beam.	Answer:	Energy	of	the	system	is	found	by	the	addition	of	kinetic	and	potential	parts.	and	carriage	are	assumed	to	have	zero	mass.	The	carriage	is	attached	to	one	end	of	a	spring	of	equilibrium	length	r0	and	force	constant	k.	what	is	the
Lagrangian?	What	is	the	Jacobi	integral?	Is	it	conserved?	Discuss	the	relationship	between	the	two	Jacobi	integrals.	Since	the	small	spring	has	zero	equilbrium	length.	then	the	potential	energy	for	it	is	just	1	kl2	.	using	Cartesian	coordinates	is	1	m(x2	+	y	2	)	˙	˙	2	Potential	energy	is	harder	to	write	in	lab	frame.	y)	to	(r.	3	.	Solving	for	them.	y).	springs.
The	length	of	the	second	spring	is	at	all	times	considered	small	compared	to	r0	.	The	potential.	another	set	of	rails	is	perpendicular	to	the	first	along	which	a	particle	of	mass	m	moves.	as	shown	in	the	figure	below.	The	whole	system	is	forced	to	move	in	a	plane	about	the	point	of	attachment	of	the	first	spring.	y)	and	l(x.	yields	x	=	(r0	+	r)	cos	ωt	−	l	sin
ωt	y	=	(r0	+	r)	sin	ωt	+	l	cos	ωt	Manipulating	these	so	I	may	find	r(x.	what	is	the	Jacobi	integral	for	the	system?	Is	it	conserved?	•	In	terms	of	the	generalized	coordinates	relative	to	a	system	rotating	with	the	angular	speed	ω.	in	the	rotating	frame	is	T	(x.	in	the	lab	frame.	the	system	looks	stationary.	That	is.	y)	=	1	k(r2	+	l2	)	2	Where	r	is	simply	the
distance	stretched	from	equilibrium	for	the	large	spring.	l)	to	denote	the	rotating	frame	coordinates.	The	kinetic.	(x.	Beam.21	A	carriage	runs	along	rails	on	a	rigid	beam.	adding	the	two	equations	and	solving	for	r	yields	r	=	x	cos	ωt	+	y	sin	ωt	−	r0	Multiplying	x	by	sin	and	y	by	cos.	l)	=	Thus	1	l˙	m(ω	2	(r0	+	r	+	)2	+	(r	−	lω)2	)	˙	2	ω	4	.	To	find	E(r.T.	y)
=	This	energy	is	explicitly	dependent	on	time.	are	C.	l)	we	are	lucky	to	have	an	easy	potential	energy	term.	y)	=	2	(x2	+	y	2	).	We	need	1	E(r.	T	(x.Multiplying	x	by	cos	ωt	and	y	by	sin	ωt.	Taking	derivatives	of	˙	˙	x	and	y	yield	x	=	−ω(r0	+	r)	sin	ωt	+	r	cos	ωt	−	lω	cos	ωt	−	l˙	sin	ωt	˙	˙	y	=	ω(r0	+	r)	cos	ωt	+	r	sin	ωt	−	lω	sin	ωt	−	l˙	cos	ωt	˙	˙	Squaring
both	and	adding	them	yields	x2	+	y	2	=	ω	2	(r0	+	r)2	r2	+	l2	ω	2	+	l˙2	+	C.	C.	adding	and	solving	for	l	yields	l	=	−x	sin	ωt	+	y	cos	ωt	Plugging	these	values	into	the	potential	energy	to	express	it	in	terms	of	the	lab	frame	leaves	us	with	1	1	m(x2	+	y	2	)	+	k((x	cos	ωt	+	y	sin	ωt	−	r0	)2	+	(−x	sin	ωt	+	y	cos	ωt)2	)	˙	˙	2	2	E(x.	E(x.	˙	˙	˙	Where	cross	terms.
y)	is	not	conserved.	=	2ω(r0	+	r)l˙	−	2rlω	˙	For	kinetic	energy	we	know	have	1	m(ω	2	(r0	+	r)2	r2	+	l2	ω	2	+	l˙2	+	2ω(r0	+	r)l˙	−	2rlω)	˙	˙	2	Collecting	terms	T	(r.	In	the	rotating	frame	this	may	be	a	different	story.T.	l)	+	k(l2	+	r2	)	2	1	Where	in	the	laboratory	frame.	l)	=	T	(r.	Thus	it	is	NOT	conserved	in	the	lab	frame.	l)	=	T	(r.	but	now	our	kinetic
energy	is	giving	us	problems.T.	y)	˙	˙	2	V	(x.	Bringing	it	˙	˙	together	1	1	m(x2	+	y	2	)	+	k((x	cos	ωt	+	y	sin	ωt	−	r0	)2	+	(−x	sin	ωt	+	y	cos	ωt)2	)	˙	˙	2	2	h=	This	is	equal	to	the	energy.	h(x.	l)	=	In	the	laboratory	frame.	y)	=	The	Jacobi	integral.	y)	˙	˙	˙	˙	2	Notice	that	V	(x.	therefore	energy	in	the	rotating	frame	is	conserved.	l)	−	k(r2	+	l2	)	2	5	.	d	∂L	h=−
=0	dt	∂t	we	know	h(x.	y)	=	E(x.	the	Lagrangian	is	1	L(r.	L(x.	For	the	rotating	frame.	y)	is	not	conserved	in	the	lab	frame.	y)	∂x	˙	∂y	˙	1	˙	˙	h	=	xmx	+	ymy	−	m(x2	+	y	2	)	+	V	(x.	or	energy	function	is	h=	i	qi	˙	∂L	−L	∂	qi	˙	We	have	h=x	˙	∂L	∂L	+y	˙	−	L(x.	E(r.	l)	=	T	(r.	y)	=	Where	1	k((x	cos	ωt	+	y	sin	ωt	−	r0	)2	+	(−x	sin	ωt	+	y	cos	ωt)2	)	2	1	m(x2	+	y	2	)
−	V	(x.	E(r.	y)	Because	it	is	dependent	on	time.	y)	does	not	have	any	dependence	on	x	or	y.	l)	is	conserved.	y).l˙	1	1	m(ω	2	(r0	+	r	+	)2	+	(r	−	lω)2	)	+	k(l2	+	r2	)	˙	2	ω	2	This	has	no	explicit	time	dependence.	the	Lagrangian	is	just	T	(x.	y)	−	V	(x.	It	is	of	the	from	E	=	−	2	Iω	2	.	6	.	or	Jacobi	integral	is	T	(r.	l)	=	d	∂L	h=−	=0	dt	∂t	We	have	h(r.	l)	˙	˙	ω
Collecting	terms.	and	this	nice	way	of	writing	it	reveals	an	energy	term	of	rotation	in	the	lab	frame	that	can’t	be	seen	in	the	rotating	1	frame.	1	1	1	˙	˙	m(r2	+l˙2	)+	k(l2	+r2	)+	[rmlω−lωmr−ml2	ω	2	+(r0	+r)mω	l−mω	2	(r0	+r)2	−mω	l(r0	+r)]	˙	˙	˙	2	2	2	h=	Yields	1	1	1	m(r2	+	l˙2	)	+	k(l2	+	r2	)	−	mω	2	(l2	+	(r0	+	r)2	)	˙	2	2	2	This	has	no	time
dependence.	h(r.Where	1	l˙	m(ω	2	(r0	+	r	+	)2	+	(r	−	lω)2	)	˙	2	ω	The	energy	function.	l)	conserved	in	the	rotating	frame.	l)	=	h(r.	l)	+l	∂r	˙	∂	l˙	l˙	˙	h(r.	l)	=	rm(r	−	lω)	+	lmω(r0	+	r	+	)	−	L(r.	l)	=	r	˙	∂L	˙	∂L	−	L(r.	with	some	heavy	algebra	1	l˙	l˙	1	˙	1	h	=	(r−lω)(mr−	m(r−lω))+(r0	+r+	)(mω	l−	mω	2	(r0	+r+	))+	k(l2	+r2	)	˙	˙	˙	2	ω	2	ω	2	l˙	1	1	1	mr	1	˙
+	mlω)	+	(r0	+	r	+	)(	mω	l˙	−	mω	2	(r0	+	r))	+	k(l2	+	r2	)	2	2	ω	2	2	2	h	=	(r	−	lω)(	˙	More	algebraic	manipulation	in	order	to	get	terms	that	look	like	kinetic	energy.	34)	in	Goldstein.	u=	1	sin	θ	d	u=	[−	cos−2	θ(−	sin	θ)]	=	dθ	2R	2R	cos2	θ	The	derivative	of	this	is	d	sin	θ	1	=	[sin	θ(−2	cos−3	θ)(−	sin	θ)	+	cos−2	θ	cos	θ]	dθ	2R	cos2	θ	2R	Thus	1	2	sin2	θ
cos2	θ	1	+	sin2	θ	d2	u=	[	+	]=	dθ2	2R	cos3	θ	cos3	θ	2R	cos3	θ	d2	1	+	sin2	θ	cos2	θ	2	u+u=	+	=	2	3θ	dθ	2R	cos	2R	cos3	θ	2R	cos3	θ	That	is	8R2	=	8R2	u3	cos3	θ	8R3	1	Solving	for	V	(	u	)	by	integrating	yields.	Answer:	Using	the	differential	equation	of	the	orbit.	y	and	v	as	a	function	of	angle	around	the	circle	and	show	that	˙	˙	all	three	quantities	are
infinite	as	the	particle	goes	through	the	center	of	force.	7	.	d2	1	m	d	V(	)	u+u=−	2	2	dθ	l	du	u	Where	r	=	1/u	and	with	the	origin	at	a	point	on	the	circle.	•	Show	that	for	orbit	described	the	total	energy	of	the	particle	is	zero.3.	•	Find	x.	equation	(3.	then	the	force	varies	as	the	inverse-fifth	power	of	the	distance.	•	Find	the	period	of	the	motion.13	•	Show
that	if	a	particle	describes	a	circular	orbit	under	the	influence	of	an	attractive	central	force	directed	toward	a	point	on	the	circle.	a	triangle	drawn	with	r	being	the	distance	the	mass	is	away	from	the	origin	will	reveal	r	=	2R	cos	θ	1	2R	cos	θ	Plugging	this	in	and	taking	the	derivative	twice.	f	(r)	=	−	Is	the	energy	zero?	Well.	we	know	V	(r).	2	2	8	2R2	l2
2R2	l2	−	=0	mr4	mr4	→	T	=	2R2	l2	mr4	.	lets	find	T	(r)	and	hope	its	the	negative	of	V	(r).	The	period	of	the	motion	can	be	thought	of	in	terms	of	θ	as	r	spans	from	θ	=	−	π	to	θ	=	π	.	plugging	these	in.	˙	l	=	mr2	θ	˙	l	2	=	m2	r	4	θ	2	˙	T	=	2mR2	θ2	Which	shows	that	E	=T	+V	=	the	total	energy	is	zero.	T	=	Where	r	=	2R	cos	θ	r2	=	4R2	cos2	θ	So.	l.1	8R2	l2
4	V(	)=−	u	u	4m	and	we	have	V	(r)	=	−	with	force	equal	to	d	8l2	R2	V	(r)	=	−	dr	mr5	This	force	is	inversely	proportional	to	r5	.	T	=	1	˙	˙	m(4R2	sin2	θθ2	+	4R2	cos2	θθ2	)	2	T	=	→	˙	r	=	−2R	sin	θθ	˙	˙	r2	=	4R2	sin2	θ2	˙	1	˙	m(r2	+	r2	θ2	)	˙	2	2l2	R2	mr4	˙	m4Rθ2	˙	=	2mR2	θ2	2	Put	this	in	terms	of	angular	momentum.	Remembering	that	r	=	2R	cos	θ.	π
2	π	2	r2	dθ	−π	2	4R2	cos2	θdθ	−π	2	π	2	−π	2	4mR2	θ	1	cos	θdθ	=	(	+	sin	2θ	l	2	4	2	)=	−π	2	4mR2	π	π	(	+	)	l	4	4	2mπR2	l	For	x.	y.π	2	π	2	P	=	−π	2	dt	=	−π	2	dt	dθ	dθ	This	is	π	2	P	=	−π	2	dθ	˙	θ	˙	Because	θ	=	l/mr2	in	terms	of	angular	momentum.	and	v	as	a	function	of	angle.	˙	x	=	−4R	cos	θ	sin	θ	=	−2Rθ	sin	2θ	˙	˙	y	=	2Rθ	cos	2θ	˙	v=	˙	x2	+	y	2	=	2Rθ
˙	˙	˙	What	is	θ?	In	terms	of	angular	momentum	we	remember	9	.	P	=	x	=	r	cos	θ	=	2R	cos2	θ	y	=	r	sin	θ	=	2R	cos	θ	sin	θ	=	R	sin	2θ	Finding	their	derivatives.	we	have	π	2	P	=	−π	2	mr2	dθ	l	π	2	m	P	=	l	From	above	we	have	r2	m	P	=	l	4mR2	P	=	l	And	finally.	it	can	be	shown	that	all	three	quantities	˙	˙	are	infinite	as	particle	goes	through	the	center	of
force.	•	Prove	that	in	the	same	central	force	as	above.˙	l	=	mr2	θ	˙	Plugging	in	our	r.	θ	becomes	close	to	±	π	.	show	that	perihelion	distance	of	the	parabola	is	one-half	the	radius	of	the	circle.	Goldstein	equation	3.	y	and	v	are	directly	proportional	to	the	θ	term.	2	θ	=	±(	Note	that	as	δ→0	θ→±	π	2	˙	θ→∞	π	−	δ)	2	˙	θ=	l	4mR2	˙	All	x.55.	1	mk	=	2	[1	+
cos(θ	−	θ	)]	r	l	we	have	for	the	circle.	the	speed	of	a	particle	at	√	any	point	in	a	parabolic	orbit	is	2	times	the	speed	in	a	circular	orbit	passing	through	the	same	point.	=0	1	mk	l2	=	2	→	rc	=	rc	l	mk	For	the	parabola.	The	x	may	be	˙	˙	˙	questionable	at	first	because	it	has	a	sin	2θ	and	when	sin	2θ	→	0	as	θ	→	π/2	we	˙	may	be	left	with	∞	∗	0.	=1	1	mk	l2	=	2
(1	+	1)	→	rp	=	rp	l	2mk	10	π	2	.	But	looking	closely	at	θ	we	can	tell	that	x=	˙	l	−4Rl	cos	θ	sin	θ	=−	tan	θ	4mR2	cos2	θ	mR	tan	θ	→	∞	as	θ	→	±	2.14	•	For	circular	and	parabolic	orbits	in	an	attractive	1/r	potential	having	the	same	angular	momentum.	and	solving	for	θ	cos2	θ	As	we	got	closer	to	the	origin.	Answer:	Using	the	equation	of	orbit.	and	not
forgetting	that	k	=	l2	/mr.	l2	l2	˙	→	θ2	=	2	4	r=	mk(1	+	cos	θ)	m	r	we	have	2k	2r2	l2	mkr	2	→	vp	=	m2	r4	l2	mr	For	the	speed	of	the	parabola.55).	˙	l2	l2	θ	d	(	)=	sin	θ	dt	mk(1	+	cos	θ)	mk(1	+	cos	θ)2	2	˙	vp	=	r2	θ2	(	sin2	θ	+	1)	(1	+	cos	θ)2	2	+	2	cos	θ	)	(1	+	cos	θ)2	2	˙	vp	=	r2	θ2	(	2	vp	=	˙	2r2	θ2	1	+	cos	θ	Using	r	for	a	parabola	from	Goldstein’s	(3.	we
then	have	2	vp	=	vp	=	Thus	√	2	k	mr	vp	=	√	2vc	11	.So	rc	2	The	speed	of	a	particle	in	a	circular	orbit	is	rp	=	2	˙	vc	=	r2	θ2	→	2	vc	=	r2	(	l2	)	m2	r	4	→	vc	=	l	mr	In	terms	of	k.	this	is	equal	to	√	mrk	k	l	=	=	mr	mr	mr	The	speed	of	a	particle	in	a	parabola	can	be	found	by	2	˙	vp	=	r2	+	r2	θ2	˙	r=	˙	Solving	for	vp	.	A	uniform	distribution	of	dust	in	the	solar
system	adds	to	the	gravitational	attraction	of	the	Sun	on	a	planet	an	additional	force	F	=	−mCr	where	m	is	the	mas	of	the	planet.20.	•	Show	that	nearly	circular	orbits	can	be	approximated	by	a	precessing	ellipse	and	find	the	precession	frequency.	Is	the	precession	in	the	same	or	opposite	direction	to	the	orbital	angular	velocity?	Answer:	The	equation
for	period	is	T	=	For	a	circular	orbit.58):	k	l2	=	2	3	r0	mr0	In	our	case.	C	is	a	constant	proportional	to	the	gravitational	constant	and	the	density	of	the	dust.	˙	θ=	Thus	T	=	Goldstein’s	equation	after	(3.	This	additional	force	is	very	small	compared	to	the	direct	Sun-planet	gravitational	force.	•	Calculate	the	period	of	radial	oscillations	for	slight
disturbances	from	the	circular	orbit.	mCr0	+	Solving	for	l	yields	l=	4	mr0	k	+	m2	Cr0	2π	˙	θ	l	mr2	2πmr2	l	k	l2	2	=	mr	3	r0	0	12	.	we	have	an	added	force	due	to	the	dust.	and	r	is	the	radius	vector	from	the	Sun	to	the	planet(both	considered	as	points).	•	Calculate	the	period	for	a	circular	orbit	of	radius	r0	of	the	planet	in	this	combined	field.	we	would
have	C	=	0	and	our	period	would	be	ωorb	=	T0	=	2π	k	2	mr0	→	√	ω0	=	mrk.	Dividing	our	orbital	period	by	β	will	give	us	the	period	of	the	oscillations.	β	is	the	number	of	cycles	of	oscillation	that	the	particle	goes	through	in	one	complete	orbit.Plugging	this	in	to	our	period.46)	u≡	β2	=	3	+	Solve	this	with	f	=	mCr	+	k/r2	df	2k	=	−	3	+	mC	dr	r	β2	=	3	+	r
β2	=	Now	k	r	2	+	4mCr	k	r	2	+	mCr	r	df	f	dr	r=r0	−	2k	+	mC	r3	k	r2	+	mCr	β2	=	k	mr	3	+	4C	k	mr	3	+	C	→	13	.	T	=	2πmr2	mr0	k	+	4	m2	Cr0	→	T	=	2π	k	3	mr0	+C	Here	the	orbital	angular	velocity	is	k	+C	mr3	This	is	nice	because	if	the	dust	was	not	there.45)	in	Goldstein	page	90.	states	that	for	small	deviations	from	circularity	conditions.	k	2	mr0	2
which	agrees	with	l	=	mr0	ω0	and	l	=	The	period	of	radial	oscillations	for	slight	disturbances	from	the	circular	orbit	can	be	calculated	by	finding	β.	Tosc	=	T	β	Equation	(3.	1	=	u0	+	a	cos	βθ	r	Substitution	of	this	into	the	force	law	gives	equation	(3.	ωprec	=	k	2Cmr3	Cmr3	[1	+	−	(1	+	)]	=	mr3	k	2k	k	4Cmr3	−	Cmr3	3Cmr3	=	3	mr	2k	2k	1+	Cmr3	)	k
ωprec	=	k	2Cmr3	Cmr3	[	−	]	mr3	k	2k	k	3C	=	mr3	2	mr3	k	ωprec	=	Therefore.	our	period	of	radial	oscillations	is	Tosc	=	Here	k	+	4C	mr3	A	nearly	circular	orbit	can	be	approximated	by	a	precessing	ellipse.	I’m	going	to	subtract	the	orbital	angular	velocity	from	the	radial	angular	velocity.	14	.	for	a	nearly	circular	orbit.	To	find	the	precession
frequency.	ωprec	=	4Cmr3	k	−	(	1+	3	k	mr	Using	the	binomial	expansion.Tosc	=	T	β	β=	k	mr	3	k	mr	3	+	4C	+C	Therefore.	a	precessing	ellipse	will	hug	closely	to	the	circle	that	would	be	made	by	e	=	0.	ωprec	=	ωr	−	ωorb	k	k	+	4C	−	+C	mr3	mr3	Fixing	this	up	so	as	to	use	the	binomial	expansion.	The	equation	for	an	elliptical	orbit	is	ωr	=	r=	a(1	−	e2
)	1	+	e	cos(θ	−	θ0	2π	k	mr	3	+	4C	with	e	a	r≤a	Show	that	the	scattering	produced	by	such	a	potential	in	classical	mechanics	is	identical	with	the	refraction	of	light	rays	by	a	sphere	of	radius	a	and	relative	index	of	refraction	E	+	V0	E	This	equivalence	demonstrates	why	it	was	possible	to	explain	refraction	phenomena	both	by	Huygen’s	waves	and	by
Newton’s	mechanical	corpuscles.2E(s2	+	ds	=	dΘ	πk	Putting	everything	in	terms	of	x.	s2	+	So	now...32	A	central	force	potential	frequently	encountered	in	nuclear	physics	is	the	rectangular	well.	σ(Θ)	=	1−x	k	1	1	2E	π	sin	πx	(x(2	−	x))2	And	since	we	know	dΘ	=	πdx.	σ(Θ)dΘ	=	k	(1	−	x)dx	2	(2	−	x)2	sin	πx	2E	x	3.	k	2E	k	3	2	2E	)	k	(1	−	x)2	k	k	1	k	=	+	=
2E	2E	x(2	−	x)	2E	2E	x(2	−	x)	s	ds	σ(Θ)	=	=	sin	Θ	dΘ	√(1−x)	x(2−x)	sin	πx	2E(s2	+	πk	k	3	2	2E	)	k	2E	√(1−x)	x(2−x)	=	k	1	2E(	2E	x(2−x)	)	2	3	sin	πx	πk	=	And	this	most	beautiful	expression	becomes..	σ(Θ)	=	1	1	k	1	2E	k	3	(	)2	(	)(	)2	sin	πx	π	2E	k	2E	1−x	1	3	x(2	−	x)	(x(2	−	x))	2	After	a	bit	more	algebra.	Show	also	that	the	differential	cross	section	is
n=	σ(Θ)	=	n2	a2	(n	cos	Θ	−	1)(n	−	cos	Θ	)	2	2	4	cos	Θ	(1	+	n2	−	2n	cos	Θ	)2	2	2	What	is	the	total	cross	section?	4	.	then	putting	our	total	angle	scattered.	σ(Θ)	=	Θ	=	2(θ1	−	θ2	)	This	is	because	the	light	is	refracted	from	its	horizontal	direction	twice.	sds	sin	ΘdΘ	If	the	scattering	is	the	same	as	light	refracted	from	a	sphere.Answer:	Ignoring	the	first
part	of	the	problem.	We	know	sin	θ1	=	s/a	and	using	Snell’s	law.	after	hitting	the	sphere	and	leaving	the	sphere.	in	terms	of	the	angle	of	incidence	and	transmission.	Solve	for	sin	Θ	and	cos	Θ	in	terms	of	s	2	2	sin	Θ	s	s	s	s	s	s	=	sin(arcsin	−arcsin	)	=	sin	arcsin	cos	arcsin	−cos	arcsin	sin	arcsin	2	a	na	a	na	a	na	This	is	s	s2	s2	s	cos(arccos	1	−	2	2	)	−
cos(arccos(	1	−	2	)	a	n	a	a	na	√	Using	arcsin	x	=	arccos	1	−	x2	and	sin(a	−	b)	=	sin	a	cos	b	−	cos	a	sin	b.	Θ.	Where	θ1	−	θ2	is	the	angle	south	of	east	for	one	refraction.	and	just	solving	for	the	differential	cross	section.	to	solve	for	s2	and	then	ds2	/dΘ	and	solve	for	the	cross	section	via	σ=	1	ds2	1	sds	ds2	=	=	sin	ΘdΘ	2	sin	Θ	dΘ	4	sin	Θ	cos	Θ	dΘ	2	2
Here	goes.	we	know	n=	s	sin	θ1	→	sin	θ2	=	sin	θ2	na	s	s	−	arcsin	)	a	na	Expressing	Θ	in	terms	of	just	s	and	a	we	have	Θ	=	2(arcsin	Now	the	plan	is.	Now	we	have	=	sin	Θ	s	=	(	n2	a2	−	s2	)	−	2	na2	a2	−	s2	)	Doing	the	same	thing	for	cos	Θ	yields	2	5	.	we	can	now	do	some	calculus.	ds2	a2	sin	Qn2	=	[cos	Q(1	−	2n	cos	Q	+	n2	)	−	n	sin2	Q]	dΘ	q2	ds2	n2
a2	=	2	sin	Q[cos	Q	−	2n	cos2	Q	+	n2	cos	Q	−	n(1	−	cos2	Q)]	dΘ	q	Expand	and	collect	n2	a2	ds2	=	2	sin	Q[−n	cos2	Q	+	cos	Q	+	n2	cos	Q	−	n]	dΘ	q	Group	it	up	ds2	n2	a2	=	2	sin	Q(n	cos	Q	−	1)(n	−	cos	Q)	dΘ	q	Plug	back	in	for	Q	and	q	2	:	6	.	Also	to	save	space.	I	2	like	using	the	letter	q.cos	Θ	1	(	a2	−	s2	=	2	na2	n2	a2	−	s2	+	s2	)	Using	cos(a	−	b)	=	cos
a	cos	b	+	sin	a	sin	b.	I’m	going	to	let	q	2	equal	the	denominator	squared.	lets	say	Θ	=	Q.	Still	solving	for	s2	in	terms	of	cos	and	sin’s	we	proceed	sin2	This	is	sin2	Note	that	n2	a2	−	s2	So	we	have	s2	2s2	Θ	2s2	s2	Θ	Θ	=	2	2	(n2	+	1	−	2	−	2n	cos	+	2	)	=	2	2	(1	+	n2	−	2n	cos	)	2	n	a	a	2	a	n	a	2	a2	−	s2	=	na2	cos	Θ	−	s2	2	2s2	s2	2s4	(n2	+	1)	−	2	4	−	2	4	2
a2	n	n	a	n	a	n2	a2	−	s2	a2	−	s2	s2	Θ	=	2	4	(n2	a2	−	s2	−	2	n2	a2	−	s2	2	n	a	a2	−	s2	+	a2	−	s2	)	sin2	Solving	for	s2	s2	=	n2	a2	sin2	Θ	2	1	+	n2	−	2n	cos	Θ	2	Glad	that	that	mess	is	over	with.	Making	a	partial	substitution	to	see	where	to	go:	qmin	=	1	−	2	+	n2	=	n2	−	1	(n−1)2	qmax	=	n2	−	2n	+	1	=	(n	−	1)2	(n−1)2	n2	−1	σT	=	n2	−1	2πa2	n2	(nx	−	1)(n
−	x)	dq	=	πa2	q2	−2n	7	−n(nx	−	1)(n	−	x)	dq	q2	.	Θ	we	will	find	it	easier	to	plug	in	x	=	cos	2	as	a	substitution.	If	s	>	a.	let	q	equal	the	term	in	the	denominator.	At	s	=	a	we	have	maximum	Θ.	This	integral	is	still	hard	to	manage.	sin	Θ	=	2	sin	Θ	cos	Θ	was	used	on	the	sin	Θ.	we’ll	have	Θmax	.	1	σT	=	π	1	n	a2	n2	(nx	−	1)(n	−	x)	2dx	(1	−	2nx	+	n2	)2	1	Θ
Θmax	1	dx	=	−	sin	dΘ	cos	=	2	2	2	n	The	half	angle	formula.	this	time.	so	make	another	substitution.	When	(n	cos	Θ	−	1)	is	zero.	1	4	sin	Θ	2	σ=	cos	Θ	2	n2	a2	sin	Θ	(n	cos	Θ	−	1)(n	−	cos	Θ	)	ds2	1	2	2	2	=	Θ	Θ	dΘ	4	sin	2	cos	2	(1	−	2n	cos	Θ	+	n2	)2	2	We	obtain	σ(Θ)	=	n2	a2	(n	cos	Θ	−	1)(n	−	cos	Θ	)	1	2	2	4	cos	Θ	(1	−	2n	cos	Θ	+	n2	)2	2	2	The	total	cross
section	involves	an	algebraic	intensive	integral.	to	simplify	our	integral.	The	total	cross	section	is	given	by	Θmax	σT	=	2π	0	σ(Θ)	sin	ΘdΘ	To	find	Θmax	we	look	for	when	the	cross	section	becomes	zero.	its	as	if	the	incoming	particle	2	1	misses	the	‘sphere’.	the	2	2	negative	sign	switched	the	direction	of	integration.n2	a2	sin	Θ	(n	cos	Θ	−	1)(n	−	cos	Θ	)
ds2	2	2	2	=	dΘ	(1	−	2n	cos	Θ	+	n2	)2	2	Using	our	plan	from	above.	and	the	factor	of	2	had	to	be	thrown	in	to	make	the	dx	substitution.	q	=	1	−	2nx	+	n2	→	dq	=	−2ndx	where	The	algebra	must	be	done	carefully	here.	So	using	Θmax	=	2	arccos	n	.	subtract	a	1.	That	is:	q	2	−	(n2	−	1)2	q	2	−	n4	+	2n2	−	1	=	=	−n(nx	−	1)(n	−	x)	4	4	Now.	add	a	2n2	and
divide	the	whole	thing	by	4	we’ll	get	the	above	numerator.Expanding	q	2	to	see	what	it	gives	so	we	can	put	the	numerator	in	the	above	integral	in	terms	of	q	2	we	see	q	2	=	n4	+	1	+	2n2	−	4n3	x	−	4nx	+	4n2	x2	Expanding	the	numerator	−n(nx	−	1)(n	−	x)	=	−n3	x	−	nx	+	n2	x2	+	n2	If	we	take	q	2	and	subtract	a	n4	.	our	integral	is	(n−1)2	σT	=	πa	2
n2	−1	q	2	−	(n2	−	1)2	dq	4q	2	This	is	finally	an	integral	that	can	be	done	by	hand	πa2	σT	=	4	(n2	−	1)2	πa2	(n2	−	1)2	1−	dq	=	(z	+	q2	4	z	(n−1)2	)	n2	−1	After	working	out	the	few	steps	of	algebra.	πa2	4n2	−	8n	+	4	=	πa2	4	n2	−	2n	+	1	The	total	cross	section	is	σT	=	πa2	8	.	1.	2004	4.	are	A(BC)	=	k	Aik	(	m	Bkm	Cmj	)	(AB)C	=	m	(	k	Aik	Bkm	)Cmj
Both	the	elements	are	the	same.	σx	σx	=	˜	σz	σz	=	˜	0	1	1	0	0	1	1	0	1	0	0	−1	=	=	1	0	0	1	1	0	0	1	=I	=I	1	0	0	−1	The	product	of	these	two:	σx	σ	z	=	0	1	1	0	1	0	0	−1	=	0	−1	1	0	≡q	1	.	As	long	as	the	products	are	defined.	4.	Show	that	the	product	of	two	orthogonal	matrices	is	also	orthogonal.	4.	4.	They	only	differ	in	the	order	of	addition.14.10.15	Michael
Good	Oct	4.1	Prove	that	matrix	multiplication	is	associative.	and	there	are	finite	dimensions.	σx	.	matrix	multiplication	is	associative.	and	σz	are	both	orthogonal.	Answer:	Matrix	associativity	means	A(BC)	=	(AB)C	The	elements	for	any	row	i	and	column	j.	Orthogonality	may	be	defined	by	AA	=	I	The	Pauli	spin	matrices.Homework	6:	#	4.2.	4.	2	Prove
the	following	properties	of	the	transposed	and	adjoint	matrices:	AB	=	B	A	(AB)†	=	B	†	A†	Answer:	For	transposed	matrices	AB	=	AB	ij	=	ABji	=	ajs	bsi	=	bsi	ajs	=	Bis	Asj	=	(B	A)ij	=	B	A	As	for	the	complex	conjugate.r	bsi	aks	akr	brj	=	˜	bsi	(AA)sr	brj	This	is	ABAB	=	˜	bsi	δsr	brj	=	BBij	=	δij	Therefore	the	whole	matrix	is	I	and	the	product	ABAB	=	I	is
orthogonal.	if	AA	=	1	BB	=	1	0	−1	1	0	0	−1	1	0	=	1	0	0	1	=I	then	both	A.s.	4.s.	We	can	look	at	ABAB	=	k	(AB)ik	(AB)kj	=	k	AB	ki	AB	kj	=	k.	(AB)†	=	(AB)∗	From	our	above	answer	for	transposed	matrices	we	can	say	AB	=	B	A	2	.	and	B	are	orthogonal.is	also	orthogonal:	qq	=	˜	More	generally.r	aks	bsi	akr	brj	The	elements	are	aks	bsi	akr	brj	=	k.	A	≡	eB
=	1	+	B	+	B	2	+	.	we	can	provide	a	rigorous	proof.	+	2	n!	then	prove	the	following	properties:	•	eB	eC	=	eB+C	.	noting	that	i	+	j	=	k	k	0	BiC	j	=	i!j!	3	k	0	B	k−j	C	j	(k	−	j)!j!	..10	If	B	is	a	square	matrix	and	A	is	the	exponential	of	B.	•	A−1	=	e−B	•	eCBC	−1	=	CAC	−1	•	A	is	orthogonal	if	B	is	antisymmetric	Answer:	Providing	that	B	and	C	commute.
Looking	at	the	kth	order	terms..	providing	B	and	C	commute...	BC	−	CB	=	0	we	can	get	an	idea	of	what	happens:	C2	C2	B2	B2	+O(B	3	))(1+C	+	+O(C	3	))	=	1+C	+	+B	+BC	+	+O(3)	2	2	2	2	BC	=	CB	(1+B	+	This	is	1	(B	+	C)2	1+(B	+C)+	(C	2	+2BC	+B	2	)+O(3)	=	1+(B	+C)+	+O(3)	=	eB+C	2	2	Because	BC	=	CB	and	where	O(3)	are	higher	order	terms
with	products	of	3	or	more	matrices.	defined	by	the	infinite	series	expansion	of	the	exponential.	Bn	1	+	.	by	using	the	expansion	for	exp	we	get.	Expanding	the	left	hand	side	of	eB	eC	=	eB+C	and	looking	at	the	kth	order	term.And	so	we	have	(AB)†	=	(AB)∗	=	(B	A)∗	=	B	∗	A∗	=	B	†	A†	4..	.	Bence):	(B	+	C)k	1	=	k!	k!	k	0	k!	B	k−j	C	j	=	(k	−	j)!j!	k	0	B	k−j
C	j	(k	−	j)!j!	we	get	the	same	term.	(a	proof	of	which	is	given	in	Riley.....	A−1	=	e−B	To	prove	eCBC	its	best	to	expand	the	exp	∞	−1	=	CAC	−1	0	1	CBC	−1	CBC	−1	CBC	−1	CBC	−1	CBC	−1	..	Hobsen.	To	prove	A−1	=	e−B	We	remember	that	A−1	A	=	1	and	throw	e−B	on	the	right	A−1	Ae−B	=	1e−B	A−1	eB	e−B	=	e−B	and	from	our	above	proof	we
know	eB	eC	=	eB+C	so	A−1	eB−B	=	e−B	Presto.+	+.	n!	2	n!	Do	you	see	how	the	middle	C	−1	C	terms	cancel	out?	And	how	they	cancel	each	out	n	times?	So	we	are	left	with	just	the	C	and	C	−1	on	the	outside	of	the	B’s.	QED.	∞	0	1	(CBC	−1	)n	=	n!	B	∞	0	1	CB	n	C	−1	=	CeB	C	−1	n!	Remember	A	=	e	and	we	therefore	have	eCBC	−1	=	CAC	−1	4	.
(CBC	−1	)n	=	1+CBC	−1	+	+.and	using	the	binomial	expansion	on	the	right	hand	side	for	the	kth	order	term..	For	any	other	set	of	i.	so	A	=	A−1	and	we	can	happily	say	A	is	orthogonal.14	•	Verify	that	the	permutation	symbol	satisfies	the	following	identity	in	terms	of	Kronecker	delta	symbols:	ijp	rmp	=	δir	δjm	−	δim	δjr	•	Show	that	ijp	ijk	=	2δpk
Answer:	To	verify	this	first	identity.	4.	we	know	that	e−B	=	A−1	.To	prove	A	is	orthogonal	A	=	A−1	if	B	is	antisymmetric	−B	=	B	We	can	look	at	the	transpose	of	A	∞	A=	0	Bn	=	n!	∞	0	Bn	=	n!	∞	0	(−B)n	=	e−B	n!	But	from	our	second	proof.	If	ijp	j=m=i	j=m=i	ijp	=	rmp	and	whether	or	not	is	±1	the	product	of	the	two	gives	i=m	j=r=i	5	.	if	i=r	then	a
+1.e.	all	we	have	to	do	is	look	at	the	two	sides	of	the	equation.	if	the	right	hand	side	has	i=r	we	get	+1.	For	the	left	hand	side.	i.	analyzing	the	possibilities.	If	i=m	j=r=i	we	get	−1.	and	m	we	get	0.	j.	r.	lets	match	conditions.	we	set	i	=	r.	this	is	called	‘contracting’	we	get	ijk	ijp	=	δjj	δkp	−	δjp	δkj	Using	the	summation	convention.	cast	in	a	different
form:	ijk	imp	=	δjm	δkp	−	δjp	δkm	This	is	equivalent	because	the	product	of	two	Levi-Civita	symbols	is	found	from	the	deteriment	of	a	matrix	of	delta’s.	z).	its	helpful	to	label	the	axes	of	rotation	˙	˙	˙	for	θ.	none	can	have	the	same	value	as	p.	(not	all	four	subscripts	may	be	equal	because	then	it	would	be	=	0	as	if	i	=	j	or	r	=	m).	j.	To	show	that	ijp	ijk	=
2δpk	we	can	use	our	previous	identity.	If	we	also	set	j	=	m.	that	any	of	the	subscripts	may	take.	z	)	we	can	find	the	angular	velocity	along	the	space	axes	(x.15	Show	that	the	components	of	the	angular	velocity	along	the	space	set	of	axes	are	given	in	terms	of	the	Euler	angles	by	˙	˙	ωx	=	θ	cos	φ	+	ψ	sin	θ	sin	φ	˙	˙	ωy	=	θ	sin	φ	−	ψ	sin	θ	cos	φ	˙	˙	ωz	=	ψ
cos	θ	+	φ	Answer:	Using	the	same	analysis	that	Goldstein	gives	to	find	the	angular	velocity	along	the	body	axes	(x	.	y.then	rmp	=	equal	to	−1.	ψ	and	φ.	m.	r.	that	is	=	δir	δjm	δkp	+	δim	δjp	δkr	+	δip	δjr	δkm	−	δim	δjr	δkp	−	δir	δjp	δkm	−	δip	δjm	δkr	ijk	rmp	For	our	different	form.	δjj	=	3.	To	make	a	drawing	easier.	6	.	the	only	non-zero	values	are	the
ones	above.	Since	there	are	only	three	values.	y	.	jip	=−	ijp	and	whether	or	not	ijp	is	±1	the	product	is	now	These	are	the	only	nonzero	values	because	for	i.	ijk	ijp	=	3δkp	−	δkp	=	2δkp	ijk	ijp	4.	Therefore	because	the	line	of	nodes	is	perpendicular	to	the	z	space	axis	there	is	no	component	of	θ	contributing	to	angular	velocity	around	˙	˙	the	z	space	axis.
ψ	revolves	around	z	.	We	can	see	that	φ	just	revolves	around	z	in	the	first	place!	Now	lets	look	at	φ	Right?	So	there	is	no	need	to	make	any	‘transformation’	or	make	any	changes.N.	that	is.	Does	this	makes	sense?	We	˙	˙	find	the	z	part.	θz	=	0.	because	they	both	lie	in	the	same	xy	plane.	which	is	θ.	What	is	θx	?	Well.	θ	is	along	the	line	of	nodes.	Add
them	all	up	for	our	total	ωz	.	Lets	look	at	φx	.	So	we	˙	˙	get	after	two	projections.	that	is.	Yes?	So	˙	˙	˙	˙	θx	=	θ	cos	φ.	See	how	φ	revolves	around	the	z	axis?	Well.	If	φ	=	0	we	would	have	projected	it	right	on	top	of	the	y	−	axis!	So	we	can	make	sure	that	if	φ	=	0	we	have	a	zero	component	for	x	by	multiplying	by	sin	φ.	˙	x	=	0.	Now	its	in	the	same	plane.
That	component	depends	on	how	much	angle	there	is	between	z	and	z.	But	where	is	it	facing	in	this	plane?	We	can	see	that	depends	on	the	angle	φ.	We	first	have	to	find	the	component	in	the	same	xy	plane.	θ	is	along	the	line	of	nodes.	˙	˙	˙	˙	˙	ωx	=	θx	+	ψx	+	φx	=	θ	cos	φ	+	ψ	sin	θ	sin	φ	+	0	I’ll	explain	ωy	for	kicks.	What	about	ψz	?	Well.	angular
velocity	in	the	x	space	axis.	So	7	.	˙	˙	Lets	take	φz	=	φ.	which	is	the	adjacent	side	to	θ.	Thus	we	have	ψz	=	ψ	cos	θ.	So	to	get	into	˙	˙	the	xy	plane	we	can	take	ψx.	θ	changes	and	revolves	around	the	line	of	nodes	axis.	Now	look	at	ψx	.˙	θ	→	L.	Its	y	component	depends	on	the	angle	φ.	then	find	the	component	of	the	x	direction.	the	z	axis	is	perpendicular
to	the	˙	x	axis	there	for	there	is	no	component	of	φ	that	contributes	to	the	x	space	axis.	ψx	=	ψ	sin	θ	sin	φ.	Try	ωx	.	Look	˙	˙	for	θy	.	We	can	see	that	ψ	is	along	the	z	body	axis.	˙	ψ→z	˙	φ→z	We	want	˙	˙	˙	ωx	=	θx	+	ψx	+	φx	˙	˙	˙	ωy	=	θy	+	ψy	+	φy	˙	˙	˙	ωz	=	θz	+	ψz	+	φz	Lets	start	with	ωz	first	to	be	different.	˙	z	.	So	there	is	a	component	along	z	due	to
a	changing	ψ.	we	can	see	that	θ	is	along	the	line	of	nodes.	we	just	see	that	the	angle	between	the	line	of	nodes	and	the	x	axis	is	only	φ.	˙	˙	˙	˙	˙	ωz	=	θz	+	ψz	+	φz	=	0	+	ψ	cos	θ	+	φ	˙	˙	Now	lets	do	the	harder	ones.	that	is	θ	revolves	around	the	line	of	nodes.	To	find	the	x	component	of	that.	Add	these	all	up	for	our	total	ωx	.y	=	ψ	sin	θ.O.	If	we	look	at
the	diagram	carefully	on	˙	page	152.	The	adjacent	side	to	φ	with	θ	as	the	hypotenuse.	˙	˙	φ	it	is	in	a	whole	different	plane	than	x.	even	though	the	process	is	exactly	the	same.	Look	for	ψy	.	For	φy	we	note	that	φ	revolves	around	the	z	axis.	Thats	good!	So	lets	make	it	if	˙	φ	=	0	we	have	the	full	ψ	sin	θ.	Therefore	no	component	in	˙	the	y	direction.	so	two
projections	are	necessary	to	find	its	component.	(throw	˙	˙	˙	in	a	negative).	So	we	have	ψy	=	−ψ	sin	θ	cos	φ.	Project	down	to	the	xy	˙	˙	plane	like	we	did	before.	But	we	also	have	projected	it	in	the	opposite	direction	of	the	positive	y	direction.	completely	perpendicular	to	y.	(ie	multiply	by	cos	φ	because	cos	0	=	1).	φy	=	0.	θy	=	θ	sin	φ.y	=	ψ	sin	θ	and
now	we	remember	that	if	φ	=	0	we	would	have	exactly	placed	it	on	top	of	the	y	axis.	Its	in	a	different	plane	again.˙	˙	˙	project	it	to	the	y	axis.	ψx.	Add	them	all	up	˙	˙	˙	˙	˙	ωy	=	θy	+	ψy	+	φy	=	θ	sin	φ	−	ψ	sin	θ	cos	φ	+	0	Here	is	all	the	ω’s	together	˙	˙	ωx	=	θ	cos	φ	+	ψ	sin	θ	sin	φ	˙	˙	ωy	=	θ	sin	φ	−	ψ	sin	θ	cos	φ	˙	˙	ωz	=	ψ	cos	θ	+	φ	8	.	We	are	to	find	ψ	=
ω	cos	θt	We	know	ω	is	directed	north	along	the	axis	of	rotation.	θ.23.	If	we	look	at	the	components	of	ω.	lets	see	where	ω	is.(θ	is	zero	at	the	north	pole.	and	call	z	the	vertical	direction	pointed	toward	the	sky.15.	ω	is	aligned	with	y	.13.	5.	if	we	are	at	the	equator.Homework	7:	#	4.	5.	Place	ourselves	in	the	coordinate	system	of	whoever	may	be	firing	the
projectile	on	the	surface	of	the	Earth.	λ	=	π/2	−	θ.22.	we	can	take	a	hint	from	Goldstein’s	Figure	4.	when	ω	and	z	are	aligned).	Foucault	pendulum	Michael	Good	Oct	9.	If	we	are	at	the	north	pole.	Note	that	the	angle	between	z	and	ω	is	the	co-latitude.	the	direction	of	deviation	being	to	the	right	in	the	northern	hemisphere.	5.	Answer:	I’ll	call	the
angular	deviation	ψ.	that	is.	that	is.	the	angle	from	the	poles	to	the	point	located	on	the	surface	of	the	Earth.21.	sticking	out	of	the	north	pole	of	the	earth.	With	our	coordinate	system	in	hand.	Show	that	to	a	first	approximation	the	angular	deviation	from	the	direction	of	fire	resulting	from	the	Coriolis	effect	varies	linearly	with	time	at	a	rate	ω	cos	θ
where	ω	is	the	angular	frequency	of	Earth’s	rotation	and	θ	is	the	co-latitude.	but	horizontally	north).	Only	ωz	is	used	for	our	approximation.	Parallel	transport	it	to	the	surface	and	note	that	it	is	between	y	and	z	.	We	know	θ	is	the	co-latitude.	It	is	clear	that	there	is	1	.	call	x	the	horizontal	direction	pointed	east.	2004	4.	it	is	completely	aligned	with	z	.	λ
is	the	angle	from	the	equator	to	the	point	located	on	the	surface	of	the	Earth.	The	latitude.	that	deflection	of	the	horizontal	trajectory	in	the	northern	hemisphere	will	depend	on	only	the	z	component	of	ω.	Call	y	the	horizontal	direction	pointing	north	(not	toward	the	north	pole	or	into	the	ground.	labeled	ωz	.22	A	projectile	is	fired	horizontally	along
Earth’s	surface.	So	following	Goldstein’s	figure.	Note	that	there	is	no	Coriolis	effect	at	the	equator	when	θ	=	π/2.	for	ψ	we	can	draw	a	triangle	and	note	that	the	distance	traveled	by	the	projectile	is	just	x	=	vt.	(as	explained	on	wolfram	research)	we	can	calculate	the	moment	of	inertia	for	the	triangle.no	component	of	ω	in	the	x	direction.15	Find	the
principal	moments	of	inertia	about	the	center	of	mass	of	a	flat	rigid	body	in	the	shape	of	a	45o	right	triangle	with	uniform	mass	density.	with	it	situated	with	long	side	on	the	x-axis.	because	the	Coriolis	effect	is	Fc	=	−2m(ω	×	v)	and	ωy	×v	would	add	a	contribution	in	the	z	direction	because	our	projectile	is	fired	only	along	x	and	y	.	horizontally.	2	.	The
off-diagonal	elements	of	the	inertia	tensor	vanish.	If	we	took	into	account	the	component	in	the	y	direction	we	would	have	an	effect	causing	the	particle	to	move	into	the	vertical	direction.	d=	xψ	=	d	→	ψ=	d	x	vω	cos	θt2	=	ω	cos	θt	vt	Therefore	the	angular	deviation	varies	linearly	on	time	with	a	rate	of	ω	cos	θ.	5.	What	are	the	principal	axes?	ψ=
Answer:	Using	the	moment	of	inertia	formula	for	a	lamina.	1	2	ac	t	=	vω	cos	θt2	2	And	using	a	small	angle	of	deviation.	we	shall	only	be	concerned	with	ωz	.	that	is.	therefore	no	angular	deviation.	while	the	y-axis	cuts	through	the	middle.	which	is	a	flat	closed	surface.	Our	acceleration	due	to	the	Coriolis	force	is	ac	=	−2(ω	×	v)	=	2(v	×	ω)	The
component	of	ω	in	the	z	direction	is	ωz	=	ω	cos	θ.	Thus	the	magnitude	of	the	acceleration	is	ac	=	2vω	cos	θ	The	distance	affected	by	this	acceleration	can	be	found	through	the	equation	of	motion.	you	won’t	do	the	integral	over	again.	0).	a	.	with	r0	=	a/3	2	IX	=	Ix	−	M	r0	IY	=	Iy	2	IZ	=	Iz	−	M	r0	These	are	1	1	3	2	M	a2	IX	=	(	−	)M	a2	=	(	−	)M	a2	=	6	9
18	18	18	IY	=	M	a2	6	3	.	The	center	of	mass	is	ycm	=	2	ycm	=	1	a2	a	σ	M	a	0	0	a−x	ydxdy	=	2	a2	a	0	(a	−	x)2	dx	2	x3	3	a	0	(a2	−	2xa	+	x2	)dx	=	a2	x	−	ax2	+	0	1	a	=	2	a	3	From	symmetry	we	can	tell	that	the	center	of	mass	is	(0.a	a−x	0	Ix	=	σy	2	dxdy	=	2	0	M	2	2M	y	dydx	=	2	A	a	a	0	(a	−	x)3	dx	3	Solving	the	algebra.	so	if	you’re	clever.	Using	the	3
parallel	axis	theorem.	2M	3a2	a	Ix	=	(−x3	+	3ax2	−	3a2	x	+	a3	)dx	=	0	2M	a2	8	1	6	M	a2	[	−	−	]=	3	4	4	4	6	For	Iy	a	a−y	0	Iy	=	σx2	dxdy	=	2	0	M	2	x	dxdy	A	This	has	the	exact	same	form.	Iy	=	For	Iz	Iz	=	1	1	M	a2	σ(x2	+	y	2	)dxdy	=	Ix	+	Iy	=	(	+	)M	a2	=	6	6	3	M	a2	6	We	can	use	the	parallel	axis	theorem	to	find	the	principal	moments	of	inertia	about
the	center	of	mass.	we	may	equate	the	torque	to	the	moment	of	inertia	times	the	angular	acceleration.1	1	2	IZ	=	(	−	)M	a2	=	M	a2	3	9	9	5.	The	equation	of	motion	becomes	2	¨	−lM	g	sin	θ	=	(M	rg	+	M	l2	)θ	Using	small	oscillations.	T	.	Compute	the	period	for	small	oscillations	in	terms	of	the	radius	of	gyration	about	the	center	of	gravity	and	the
separation	of	the	point	of	suspension	from	the	center	of	gravity.	¨	lF	=	I	θ	The	force	is	−M	g	sin	θ.	then	the	sum	of	these	distances	is	equal	to	the	length	of	the	equivalent	simple	pendulum.	Then	we	get	4	.	each	having	the	same	period.21	A	compound	pendulum	consists	of	a	rigid	body	in	the	shape	of	a	lamina	suspended	in	the	vertical	plane	at	a	point
other	than	the	center	of	gravity.	we	can	apply	the	small	angle	approximation	sin	θ	≈	θ	2	¨	−lgθ	=	(rg	+	l2	)θ	lg	¨	θ+θ	=0	2	rg	+	l	2	This	is	with	angular	frequency	and	period	ω=	lg	+	l2	→	T	=	2π	=	2π	ω	2	rg	+	l	2	lg	2	rg	This	is	the	same	as	the	period	for	a	physical	pendulum	T	=	2π	I	=	2π	M	gl	2	rg	+	l	2	lg	If	we	have	two	points	of	suspension.	Show
that	if	the	pendulum	has	the	same	period	for	two	points	of	suspension	at	unequal	distances	from	the	center	of	gravity.	and	l	is	the	distance	between	the	pivot	point	and	center	of	gravity.	and	the	moment	of	inertia.	using	the	parallel	axis	theorem	is	2	I	=	M	rg	+	M	l	2	where	rg	radius	of	gyration	about	the	center	of	gravity.	l1	and	l2	.	Answer:	Looking
for	an	equation	of	motion.	04	s.	the	door	will	slam	shut	as	the	automobile	picks	up	speed.	2	2	rg	rg	+	l1	+	l	1	=	+	l2	+	l1	l1	l2	2	rg	(l2	−	l1	)	+	2l1	=	l2	+	l1	l1	l2	This	is	only	true	if	2	rg	=	l	1	l	2	Thus	our	period	becomes	T	=	2π	2	2	rg	+	l	1	=	2π	l1	g	2	l	1	l	2	+	l1	=	2π	l1	g	l2	+	l	1	=	2π	g	L	g	where	L	is	the	length	of	a	simple	pendulum	equivalent.	So	we



get	2¨	mr0	θ	=	−amf	sin	θ	Our	equation	of	motion	is	5	.	the	radius	of	gyration	of	the	door	about	the	axis	of	rotation	is	r0	and	the	center	of	mass	is	at	a	distance	a	from	the	hinges.	Obtain	a	formula	for	the	time	needed	for	the	door	to	close	if	the	acceleration	f	is	constant.	because	we	are	looking	for	l1	+	l2	to	be	equivalent	to	a	simple	pendulum	length.
Answer:	Begin	by	setting	the	torque	equal	to	the	product	of	the	moment	of	inertia	and	angular	acceleration.	The	force	is	F	=	−mf	sin	θ.	If	the	hinges	of	the	door	are	toward	the	front	of	the	car.	Show	that	if	f	is	0.2m	wide.	5.	the	time	will	be	approximately	3.2π	This	is	2	2	rg	+	l	1	=	2π	l1	g	2	2	rg	+	l	2	l2	g	2	2	2	2	rg	+	l	1	rg	+	l	2	=	l1	l2	And	in	a	more
favorable	form.3m/s2	and	the	door	is	a	uniform	rectangle	is	1.23	An	automobile	is	started	from	rest	with	one	of	its	doors	initially	at	right	angles.	add	l1	to	both	sides.	¨	I	θ	=	aF	2	The	moment	of	inertia	is	I	=	mr0	.	while	the	math	runs	the	show.	and	may	be	integrated.af	¨	θ	=	−	2	sin	θ	r0	This	is	rough.	In	our	case	we	can	not	use	the	small	angle
approximation.wolfram.	Here	is	a	handy	trick.com/EllipticIntegralSingularValue.	6	.	2	r0	2af	π	2	T	=	√	0	dθ	=	cos	θ	2	r0	2af	π	2	0	dθ	=	cos	θ	−	cos	π	2	2	r0	√	π	2K(sin	)	2af	4	This	can	be	seen	from	mathworld’s	treatment	of	elliptic	integrals.	denoted	K.	Now	we	have	T	=	√	√	2	r0	2	K(	)	af	2	K(	22	)	belongs	to	a	group	of	functions	called	‘elliptic	integral
singular	values’.	π	2	T	=	0	dt	dθ	=	dθ	π	2	0	dθ	=	˙	θ	π	2	0	2	r0	dθ	√	2af	cos	θ	Here	is	where	the	physics	takes	a	backseat	for	a	few.	˙	˙	˙	dθ	dθ	dθ	dθ	˙	d	dθ	¨	=	=	=	θ	θ=	dt	dt	dt	dθ	dt	dθ	Plug	this	into	our	equation	of	motion	˙	dθ	˙	af	θ	=	−	2	sin	θ	dθ	r0	This	is	separable.	˙	θ2	af	=	2	cos	θ	2	r0	˙	θ=	2af	2	cos	θ	r0	The	time	may	be	found	by	integrating	over
the	time	of	travel	it	takes	for	the	door	to	shut.html.wolfram.com/EllipticIntegraloftheFirstKind.	K(kr	)	A	treatment	of	them	and	a	table	of	their	values	that	correspond	to	gamma	functions	are	given	here:	.	The	door	starts	at	90o	!	How	do	we	go	about	solving	this	then?	Lets	try	integrating	it	once	and	see	how	far	we	can	get.	If	we	throw	in	a	−	cos	90o	we
might	notice	that	this	integral	is	an	elliptic	integral	of	the	first	kind.	at	.	com/EllipticLambdaFunction.	half	of	the	length	of	the	car	door.	neglect	change	in	height.efunda.04	s	3(.3m/s2	we	have	2	r0	=	T	=	4a	1	√	(3.	that	is.	I	now	have	1	Γ(	)	=	3.	demonstrating	the	Earth’s	rotation.	assuming	its	mass	is	uniform.	solve	for	ξ	=	x	+	iy	Answer:	The	Foucault
pendulum	is	a	swinging	weight	supported	by	a	long	wire.	K(k1	)	=	Our	time	is	now	T	=	1	2	r0	Γ2	(	4	)	√	af	4	π	Γ2	(	1	)	√4	4	π	Fortunately.	Hint:	neglect	centrifugal	force.14	Foucault	Pendulum	Find	the	period	of	rotation	as	a	function	of	latitude.com/math/gamma/findgamma.3)	4	3.63)2	=	3.	2	I	=	M	r0	=	M	a2	+	M	2	4	a	=	M	a2	3	3	we	now	have	4	2	a	3
With	a	=	.wolfram.cfm.	√	Our	kr	value	of	22	corresponds	to	k1	.	Move	the	axis	to	the	edge	of	the	rectangle	using	3	the	parallel	axis	theorem.63)2	=	3f	4	π	4(.	I	used	this	one	.	so	that	the	wire’s	upper	support	restrains	the	wire	only	in	the	vertical	direction	and	the	weight	is	set	swinging	with	no	lateral	or	circular	motion.	there	are	nice	calculators	that
will	compute	gamma	functions	quickly.6m.	The	plane	of	the	pendulum	gradually	rotates.The	‘elliptic	lambda	function’	determines	the	value	of	kr	.6)	1	√	(3.	The	moment	of	inertia	of	a	uniform	rectangle	about	the	axis	that	bisects	it	is	M	a2	.	A	table	of	lambda	functions	is	here	.	Solve	7	.63	4	Back	to	the	physics.	And	with	f	=	.035	≈	3.	From	the	singular
value	table.	that	is.	the	acceleration	from	the	tension	and	the	Coriolis	acceleration.	It’s	solution	is.	y	facing	north.	I	have	x	facing	east.	we	are	concerned	only	with	the	x	and	y	accelerations.	the	over	damped	case	√g	√g	ξ	=	e−iω	sin	λt	(Aei	l	t	+	Be−i	l	t	)	The	equation	for	oscillation	of	a	pendulum	is	g	q+	q=0	¨	l	It	has	solution	8	g	l	>>	.	and	z	facing	to
the	sky.	using	ω	sin	λ.	The	Coriolis	acceleration	is	quickly	derived	ac	=	yω	sin	λˆ	−	xω	sin	λˆ	+	xω	cos	λˆ	˙	x	˙	y	˙	z	Looking	for	the	period	of	rotation.	T	−	2ω	×	vr	m	In	my	system.	Our	overall	acceleration	equations	become	g	˙	x	=	−	x	+	2yω	sin	λ	¨	l	g	y	=	−	y	−	2xω	sin	λ	¨	˙	l	The	g/l	terms	were	found	using	approximations	for	the	tension	components.
The	equation	of	motion	for	acceleration	takes	into	account	the	vertical	acceleration	due	to	gravity.	This	yeilds	ar	=	g	+	ωx	=	0	ωy	=	ω	sin	θ	=	ω	cos	λ	ωz	=	ω	cos	θ	=	ω	sin	λ	The	only	velocity	contributions	come	from	the	x	and	y	components.for	the	period	of	rotation	of	this	plane.	Tx	=	−T	x	→	Tx	/ml	=	g/l	and	the	same	for	y.	for	we	can	ignore	the
change	in	height.	l	Introducing	ξ	=	x	+	iy	and	adding	the	two	equations	after	multiplying	the	second	one	by	i	¨	g	˙	˙	ξ	+	ξ	=	−2ω	sin	λ(−y	+	ix)	l	¨	g	˙	ξ	+	ξ	=	−2iω	sin	λξ	l	¨	g	˙	ξ	+	ξ	+	2iω	sin	λξ	=	0	l	This	is	the	damped	oscillation	expression.	and	θ	is	the	co-latitude.	2π	2π	TEarth	cos	θ	=	→	TF	oucault	=	Tearth	TF	oucault	cos	θ	This	can	be	checked
because	we	know	the	pendulum	rotates	completely	in	1	day	at	the	North	pole	where	θ	=	0	and	has	no	rotation	at	the	equator	where	θ	=	900	.	or	ω	sin	λ	where	λ	is	the	latitude.q	=	Aei	√g	l	t	+	Be−i	√g	l	t	We	can	simplify	our	expression	then.	ω	=	2π/T	.	The	period	can	be	found	using.	Chapel	Hill	has	a	latitude	of	36o	.	a	Foucault	pendulum	takes	TF
oucault	=	to	make	a	full	revolution.	using	q	ξ	=	qe−iω	sin	λt	Where	the	angular	frequency	of	the	plane’s	rotation	is	ω	cos	θ.	24	hours	≈	41	hours	sin	36o	9	.	Homework	8:	#	5.	5.	(1.	5.	for	the	generalized	coordinate	ψ.	(5.4	Derive	Euler’s	equations	of	motion.	5.	from	the	Lagrange	equation	of	motion.26	Michael	Good	Oct	21.	in	the	form	of	Eq.39’).	2004
5.4.	Eq.6.	Answer:	Euler’s	equations	of	motion	for	a	rigid	body	are:	I1	ω1	−	ω2	ω3	(I2	−	I3	)	=	N1	˙	I2	ω2	−	ω3	ω1	(I3	−	I1	)	=	N2	˙	I3	ω3	−	ω1	ω2	(I1	−	I2	)	=	N3	˙	The	Lagrangian	equation	of	motion	is	in	the	form	∂T	d	∂T	(	)−	=	Qj	dt	∂	qj	˙	∂qj	The	kinetic	energy	for	rotational	motion	is	3	T	=	i	1	2	Ii	ωi	2	The	components	of	the	angular	velocity	in
terms	of	Euler	angles	for	the	body	set	of	axes	are	˙	˙	ω1	=	φ	sin	θ	sin	ψ	+	θ	cos	ψ	˙	˙	ω2	=	φ	sin	θ	cos	ψ	−	θ	sin	ψ	˙	˙	ω3	=	φ	cos	θ	+	ψ	Solving	for	the	equation	of	motion	using	the	generalized	coordinate	ψ:	d	∂T	∂T	(	)−	=	Nψ	˙	dt	∂	ψ	∂ψ	3	Ii	ωi	i	∂ωi	d	−	∂ψ	dt	1	3	Ii	ωi	i	∂ωi	=	Nψ	˙	∂ψ	.53).7.	pulling	out	the	negative	sign	on	the	second	term.	explicitly	3	Ii
ωi	i	∂ωi	d	−	∂ψ	dt	3	Ii	ωi	i	∂ωi	=	Nψ	˙	∂ψ	d	I3	ω3	=	Nψ	dt	˙	˙	˙	˙	I1	ω1	(−θ	sin	ψ	+	φ	sin	θ	cos	ψ)	+	I2	ω2	(−θ	cos	ψ	−	φ	sin	θ	sin	ψ)	−	This	is.Now	is	a	good	time	to	pause	and	calculate	the	partials	of	the	angular	velocities.	I1	ω1	(ω2	)	−	I2	ω2	(ω1	)	−	I3	ω3	=	Nψ	˙	I3	ω3	−	ω1	ω2	(I1	−	I2	)	=	Nψ	˙	And	through	cyclic	permutations	I2	ω2	−	ω3	ω1	(I3	−	I1
)	=	N2	˙	I1	ω1	−	ω2	ω3	(I2	−	I3	)	=	N1	˙	we	have	the	rest	of	Euler’s	equations	of	motion	for	a	rigid	body.	∂ω1	˙	˙	=	−θ	sin	ψ	+	φ	sin	θ	cos	ψ	∂ψ	∂ω2	˙	˙	=	−θ	cos	ψ	−	φ	sin	θ	sin	ψ	∂ψ	∂ω3	=0	∂ψ	and	∂ω2	∂ω1	=	=0	˙	˙	∂ψ	∂ψ	∂ω3	=1	˙	∂ψ	Now	we	have	all	the	pieces	of	the	puzzle.	2	.	6.	and	by	already	making	the	substitution.	rigid	body	motion.5.	Answer:
Marion	shows	that	the	angular	momentum	of	the	torque-free	symmetrical	top	rotates	in	the	body	coordinates	about	the	symmetry	axis	with	an	angular	frequency	ω	more	explicitly	than	Goldstein.	rolling	on	a	fixed	cone	in	space	whose	axis	is	along	the	angular	momentum.	The	angular	velocity	vector	is	along	the	line	of	contact	of	the	two	cones.	ω1	=	−(
˙	3	.	•	Show	from	parts	(a)	and	(b)	that	the	motion	of	the	force-free	symmetrical	top	can	be	described	in	terms	of	the	rotation	of	a	cone	fixed	in	the	body	whose	axis	is	the	symmetry	axis.5	cm	apart	on	Earth’s	surface.	Show	that	the	same	description	follows	immediately	from	the	Poinsot	construction	in	terms	of	the	inertia	ellipsoid.	Show	also	that	the
symmetry	axis	rotates	in	space	about	the	fixed	direction	of	the	angular	momentum	with	angular	frequency	I3	ω3	˙	φ=	I1	cos	θ	where	φ	is	the	Euler	angle	of	the	line	of	nodes	with	respect	to	the	angular	momentum	as	the	space	z	axis.	The	other	Euler	equations	are	I3	−	I	ω3	)ω2	I	I3	−	I	ω2	=	−(	˙	ω3	)ω1	I	Solving	these.	symmetric.	show	therefore	that
Earth’s	rotation	axis	and	axis	of	angular	momentum	are	never	more	than	1.	we	see	that	ω3	=	constant.	show	that	ω	rotates	in	space	˙	about	the	angular	momentum	with	the	same	frequency	φ.	but	that	the	angle	θ	between	ω	and	L	is	given	by	sin	θ	=	Ω	sin	θ	˙	φ	where	θ	is	the	inclination	of	ω	to	the	symmetry	axis.	because	we	are	dealing	with	constants.
Chapter	4.	Beginning	with	Euler’s	equation	for	force-free.	•	Using	the	results	of	Exercise	15.	Using	the	data	given	in	Section	5.6	•	Show	that	the	angular	momentum	of	the	torque-free	symmetrical	top	rotates	in	the	body	coordinates	about	the	symmetry	axis	with	an	angular	frequency	ω.	Ω=	we	get	I3	−	I	ω3	I	(ω1	+	iω2	)	−	iΩ(ω1	+	iω2	)	=	0	˙	˙	Let	q
=	ω1	+	iω2	Now	q	−	iΩq	=	0	˙	has	solution	q(t)	=	AeiΩt	this	is	ω1	+	iω2	=	A	cos	Ωt	+	iA	sin	Ωt	and	we	see	ω1	(t)	=	A	cos	Ωt	ω2	(t)	=	A	sin	Ωt	The	x3	axis	is	the	symmetry	axis	of	the	body.	I3	ω3	˙	φ=	I1	cos	θ	To	prove	I3	ω3	˙	φ=	I1	cos	θ	We	may	look	at	the	two	cone	figure	angular	momentum	components.	L1	=	0	L2	=	L	sin	θ	L3	=	L	cos	θ	If	α	is	the
angle	between	ω	and	the	vertical	body	axis.	then	I3	−	I	ω3	I	4	.	so	the	angular	velocity	vector	precesses	about	the	body	x3	axis	with	a	constant	angular	frequency	Ω=	.	where	L	is	directed	along	the	vertical	space	axis	and	θ	is	the	angle	between	the	space	and	body	vertical	axis.	For	ω	×	x3	we	have	|ω	×	x3	|	=	ω	sin	θ	=	2	2	ωx	+	ωy	Using	the	angular
velocity	components	in	terms	of	Euler	angles	in	the	body	fixed	frame.	this	is	equal	to	˙	ωL	sin	θ	=	Lφ	sin	θ	˙	with	θ	fixed.	(using	the	instant	in	time	where	x2	is	in	the	plane	of	x3	.	ω.	and	θ	=	0.	we	may	find.	where	ψ	=	0)	.	2	2	|ω	×	L|	=	ωL	sin	θ	=	L	ωx	+	ωy	Using	the	angular	velocity	components	in	terms	of	Euler	angles	in	the	space	fixed	frame.	this	is
equal	to	5	.ω1	=	0	ω2	=	ω	sin	α	ω3	=	ω	cos	α	The	angular	momentum	components	in	terms	of	α	may	be	found	L1	=	I1	ω1	=	0	L2	=	I1	ω2	=	I1	ω	sin	α	L3	=	I3	ω3	=	I3	ω	cos	α	Using	the	Euler	angles	in	the	body	frame.	and	L.	˙	˙	ω2	=	φ	sin	θ	cos	ψ	−	θ	sin	ψ	˙	ω2	=	φ	sin	θ	This	is	ω2	ω	sin	α	L2	L	L	˙	φ=	=	=	ω(	)	=	sin	θ	sin	θ	I1	ω	L2	I1	Plugging	in	L3	L
L3	I3	ω3	˙	φ=	=	=	I1	I1	cos	θ	I1	cos	θ	A	simple	way	to	show	sin	θ	=	Ω	sin	θ	˙	φ	may	be	constructed	by	using	the	cross	product	of	ω	×	L	and	ω	×	x3	.	5cm	apart	on	the	Earth’s	surface.	cos	θ	≈	1.	d=	I3	−	I1	s	=	(.˙	ω	sin	θ	=	φ	sin	θ	Using	these	two	expressions.	and	s	is	the	average	distance	of	separation.6	cm	I1	Force	free	motion	means	the	angular
momentum	vector	L	is	constant	in	time	and	stationary.	5	m.	(because	the	center	of	mass	of	the	body	is	fixed).	I3	>	I1	and	the	data	says	there	is	10m	for	amplitude	of	separation	of	pole	from	rotation	axis.	ω	precesses	2	6	.	Earth	is	considered	an	oblate	spheroid.	sin	θ	≈	θ	.	and	I1	/I3	≈	1.00327)(5)	=	1.	So	because	T	=	1	ω	·	L	is	constant.	Using	sin	θ	=	Ω
sin	θ	˙	φ	I3	ω3	˙	φ=	I1	cos	θ	Ω=	we	have	sin	θ	=	I3	−	I1	I1	cos	θ	ω3	sin	θ	I1	I3	ω3	I3	−	I1	θ	I1	I3	−	I1	ω3	I1	Applying	the	approximations	θ	=	θ	=	d	I3	−	I1	s	=	R	I1	R	where	R	is	the	radius	of	the	Earth.	as	well	as	the	rotational	kinetic	energy.	sin	θ	≈	θ	.	we	may	find	their	ratio	˙	ωL	sin	θ	Lφ	sin	θ	=	˙	ω	sin	θ	φ	sin	θ	˙	sin	θ	ψ	=	˙	sin	θ	φ	˙	Because	ψ	=	Ω
sin	θ	=	Ω	sin	θ	˙	φ	To	show	that	the	Earth’s	rotation	axis	and	axis	of	angular	momentum	are	never	more	than	1.	which	we	will	assume	is	half	the	amplitude.	the	following	approximations	may	be	made.	This	tracing	is	called	the	space	cone.	The	Euler	equations	I1	ω1	−	ω2	ω3	(I2	−	I3	)	=	0	˙	I2	ω2	−	ω3	ω1	(I3	−	I1	)	=	0	˙	I3	ω3	−	ω1	ω2	(I1	−	I2	)	=	0	˙
become	7	.	So	we	have	two	cones.	First	lets	define	our	object	to	have	distinct	principal	moments	of	inertia.	the	body	cone.	Now	the	symmetry	axis	of	the	body	has	the	angular	velocity	ω	precessing	around	it	with	a	constant	angular	frequency	Ω.	hugging	each	other	with	ω	in	the	direction	of	the	line	of	contact.	Discuss	the	boundedness	of	the	resultant
motion	for	each	of	the	three	principal	axes.7	For	the	general	asymmetrical	rigid	body.	This	is	because	k	and	p	are	so	small.	while	the	product	of	components	perpendicular	to	the	axis	can	be	neglected.	The	direction	of	ω	is	assumed	to	differ	so	slightly	from	a	principal	axis	that	the	component	of	ω	along	the	axis	can	be	taken	as	constant.	204	by
examining	the	solution	of	Euler’s	equations	for	small	deviations	from	rotation	about	each	of	the	principal	axes.	This	results	from	I1	=	I2	as	shown	below:	L	·	(ω	×	e3	)	=	0	because	ω	×	e3	=	ω2	e1	−	ω1	e2	L	·	(ω	×	e3	)	=	I1	ω1	ω2	−	I2	ω1	ω2	=	0	Because	I1	=	I2	.	We	have	ω	=	ω1	e1	if	we	spin	it	around	the	x1	axis.around	with	a	constant	angle.	I1	<	I2
<	I3	.	Answer:	Marion	and	Thornton	give	a	clear	analysis	of	the	stability	of	a	general	rigid	body.	Apply	some	small	perturbation	and	we	get	ω	=	ω1	e1	+	ke2	+	pe3	In	the	problem.	verify	analytically	the	stability	theorem	shown	geometrically	above	on	p.	Lets	examine	the	x1	axis	first.	Thus	another	cone	is	traced	out.	only	if	L	is	lined	up	with	x3	space
axis.	x3	and	ω	all	lie	in	the	same	plane	will	show	that	this	space	cone	is	traced	out	by	ω.	we	are	told	to	neglect	the	product	of	components	perpendicular	to	the	axis	of	rotation.	5.	Proving	that	L.	Solving	the	other	two	yields	I3	−	I1	˙	k=(	ω1	)p	I2	p=(	˙	I1	−	I2	ω1	)k	I3	To	solve	we	may	differentiate	the	first	equation.	Ω2	is	imaginary	and	the	perturbation
increases	forever	with	time.	and	the	intermediate	principal	axis	of	rotation	is	unstable.	Around	the	x2	axis	we	have	unbounded	motion.	8	.	Thus	we	conclude	that	only	the	largest	and	smallest	moment	of	inertia	rotations	are	stable.	we	see	ω1	is	constant	from	the	first	equation.	because	I2	<	I3	and	we	obtain	a	negative	sign	under	the	square	root.I1	ω1
−	kp(I2	−	I3	)	=	0	˙	˙	I2	k	−	pω1	(I3	−	I1	)	=	0	I3	p	−	ω1	k(I1	−	I2	)	=	0	˙	Neglecting	the	product	pk	≈	0.	and	plug	into	the	second:	I3	−	I1	¨	ω1	)p	˙	k=(	I2	Solve	for	k(t):	k(t)	=	AeiΩ1k	t	+	Be−iΩ1k	t	with	Ω1k	=	ω1	Do	this	for	p(t)	and	you	get	Ω1k	=	Ω1p	≡	Ω1	Cyclic	permutation	for	the	other	axes	yields	Ω1	=	ω	1	(I1	−	I3	)(I1	−	I2	)	I2	I3	(I2	−	I1	)(I2	−
I3	)	I3	I1	(I3	−	I2	)(I3	−	I1	)	I1	I2	(I1	−	I3	)(I1	−	I2	)	I2	I3	→	(I1	−	I3	)(I1	−	I2	)	2	¨	k+(	ω1	)k	=	0	I2	I3	Ω2	=	ω	2	Ω3	=	ω	3	Note	that	the	only	unstable	motion	is	about	the	x2	axis.	26	For	the	axially	symmetric	body	precessing	uniformly	in	the	absence	of	torques.47)	of	Goldstein.	˙	˙	ω1	=	φ	sin	θ	sin	ψ	+	θ	cos	ψ	˙	˙	ω2	=	φ	sin	θ	cos	ψ	−	θ	sin	ψ	˙	˙	ω3	=	φ
cos	θ	+	ψ	we	have	˙	˙	ω1	=	φ	sin	θ	sin	ψ	+	θ	cos	ψ	=	A	sin(Ωt	+	δ)	˙	˙	ω2	=	φ	sin	θ	cos	ψ	−	θ	sin	ψ	=	A	cos(Ωt	+	δ)	˙	˙	ω3	=	φ	cos	θ	+	ψ	=	constant	(1)	(2)	(3)	Multiplying	the	left	hand	side	of	(1)	by	cos	ψ	and	the	left	hand	side	of	(2)	by	sin	ψ.	we	have	I1	=	I2	.	symmetry	axis	Lz	.	and	Euler’s	equations	are	I1	ω1	=	(I1	−	I3	)ω2	ω3	˙	I2	ω2	=	(I3	−	I1	)ω1
ω3	˙	I3	ω3	=	0	˙	This	is	equation	(5.	only	without	the	typos.	ω1	=	A	cos	Ωt	ω2	=	A	sin	Ωt	where	Ω=	I3	−	I1	ω3	I1	Using	the	Euler	angles	in	the	body	fixed	frame.	Following	Goldstein.5.	Answer:	For	an	axially	symmetric	body.	and	subtracting	them	yields	˙	˙	˙	˙	˙	[φ	sin	θ	sin	ψ	cos	ψ	+	θ	cos2	ψ]	−	[φ	sin	θ	cos	ψ	sin	ψ	−	θ	sin2	ψ]	=	θ	9	.	find	the	analytical
solutions	for	the	Euler	angles	as	a	function	of	time.	From	this.	Thus	Ωt	+	δ	+	ψ	=	nπ	with	n	=	0.	ψ	=	−Ω.Thus	we	have	˙	θ	=	A	sin(Ωt	+	δ)	cos	ψ	+	A	cos(Ωt	+	δ)	sin	ψ	˙	θ	=	A	sin(Ωt	+	δ	+	ψ)	˙	I	assume	uniform	precession	means	θ	=	0..	if	n	=	0	ψ	=	−Ωt	+	ψ0	˙	where	ψ0	is	the	initial	angle	from	the	x	−	axis.	and	add	them:	˙	˙	˙	˙	˙	[φ	sin	θ	sin2	ψ	+	θ	cos
ψ	sin	ψ]	+	[φ	sin	θ	cos2	ψ	−	θ	sin	ψ	cos	ψ]	=	φ	sin	θ	Thus	we	have	˙	φ	sin	θ	=	A	sin(Ωt	+	δ)	sin	ψ	+	A	cos(Ωt	+	δ)	cos	ψ	˙	φ	sin	θ	=	A	cos(Ωt	+	δ	+	ψ)	Plugging	this	result	into	(3)	ω3	=	A	cos	θ	˙	cos(Ωt	+	ψ	+	δ)	+	ψ	sin	θ	˙	Using	ψ	=	−Ω	and	Ωt	+	δ	+	ψ	=	0.	ω3	=	A	cos	θ	cos(0)	−	Ω	sin	θ	A	=	(ω3	+	Ω)	tan	θ	and	since	Ω	=	I3	−I1	I1	ω	3	A	=	(ω3	+	I3	−	I1
I3	ω3	)	tan	θ	=	ω3	tan	θ	I1	I1	With	this	we	can	solve	for	the	last	Euler	angle.	cos(Ωt	+	ψ	+	δ)	I3	cos(0)	˙	φ=A	=	ω3	tan	θ	sin	θ	I1	sin	θ	10	.	φ.	±2.	±1..	no	nutation	or	bobbing	up	and	down..	If	we	multiply	the	left	hand	side	of	(1)	by	sin	ψ	and	the	left	hand	side	of	(2)	by	cos	ψ.	I3	ω3	˙	φ=	I1	cos	θ	φ=	So	all	together	θ	=	θ0	ψ(t)	=	−Ωt	+	ψ0	φ(t)	=	I3	ω3	t	+
φ0	I1	cos	θ	I3	ω3	t	+	φ0	I1	cos	θ	11	.	24.	Answer:	Let	x	=	x	+	l	sin	θ	z	=	ax2	−	l	cos	θ	Then	T	=	1	m(x	2	+	z	2	)	˙	˙	2	U	=	mgz	Solving	in	terms	of	generalized	coordinates.19.25	Michael	Good	Nov	2.	our	Lagrangian	is	1	˙	˙	m(x2	+2xl	cos	θθ+4a2	x2	x2	+4axxlθ	sin	θ+l2	θ2	)−mg(ax2	−l	cos	θ)	˙	˙	˙	˙	˙	2	L	=	T	−U	=	Using	1	qT	˙	˙	L	=	L0	+	˜	q	2	where	q
and	T	are	matrices.19	The	point	of	suspension	of	a	simple	pendulum	of	length	l	and	mass	m	is	constrained	to	move	on	a	parabola	z	=	ax2	in	the	vertical	plane.	Obtain	the	Hamilton’s	equations	of	motion.	8.	Derive	a	Hamiltonian	governing	the	motion	of	the	pendulum	and	its	point	of	suspension.	We	can	see	˙	q=	˙	T	=	with	1	x	˙	˙	θ	m(1	+	4a2	x2	)	ml(cos
θ	+	2ax	sin	θ)	ml(cos	θ	+	2ax	sin	θ)	ml2	.	8.Homework	9:	#	8.	x	and	θ.	2004	8.	Y.L0	=	−mg(ax2	−	l	cos	θ)	The	Hamilitonian	is	H=	Inverting	T	by	a	b	c	d	with	the	algebra.	=	So	now	we	have	1	m2	l2	Y	1	mY	ml2	−ml(cos	θ	+	2ax	sin	θ)	−ml(cos	θ	+	2ax	sin	θ)	m(1	+	4a2	x2	)	1	−(cos	θ	+	2ax	sin	θ)/l	−(cos	θ	+	2ax	sin	θ)/l	(1	+	4a2	x2	)/l2	m2	l2	(sin	θ	1	1	≡
22	2	−	2ax	cos	θ)	m	l	Y	T	−1	=	T	−1	=	I	want	to	introduce	a	new	friend.	lets	call	him	J	J	≡	(cos	θ	+	2ax	sin	θ)	Y	≡	(sin	θ	−	2ax	cos	θ)2	So.	1	1	=	22	ad	−	bc	m	l	(1	+	4ax2	)	−	m2	l2	(cos	θ	+	2ax	sin	θ)2	this	is	=	m2	l2	(sin2	=	θ+	4ax2	1	−	4ax	cos	θ	sin	θ	−	4a2	x2	sin2	θ)	−1	1	−1	pT	p	−	L0	˜	2	=	1	ad	−	bc	d	−b	−c	a	m2	l2	(sin2	1	θ	−	4ax	sin	θ	cos	θ	+	4a2
x2	cos2	θ)	which	I’ll	introduce.	H=	1	−1	pT	p	−	L0	˜	2	2	.	for	simplicity’s	sake.	T	−1	=	1	mY	1	−J/l	−J/l	(1	+	4a2	x2	)/l2	Proceed	to	derive	the	Hamiltonian.	and	patiently.	I	then	broke	each	p	term	and	began	grouping	them.we	can	go	step	by	step.	They	are	x=	˙	∂H	∂px	∂H	˙	θ=	∂pθ	px	=	−	˙	∂H	∂x	pθ	=	−	˙	∂H	∂θ	The	first	two	are	easy.	Go	slowly.	1	J	1	cos
θ	+	2ax	sin	θ	[px	−	pθ	]	=	[px	−	pθ	]	mY	l	m(sin	θ	−	2ax	cos	θ)2	l	x=	˙	˙	θ=	1	1	+	4a2	x2	1	1	+	4a2	x2	[−Jpx	+	pθ	]	=	[−(cos	θ+2ax	sin	θ)px	+	pθ	]	2	mY	l	l	ml(sin	θ	−	2ax	cos	θ)	l	But	the	next	two	are	far	more	involved.	I	handled	the	partial	with	respect	to	x	by	taking	the	product	rule	between	the	two	main	pieces.	especially	with	my	substitutions.	After
taking	the	derivative	before	grouping.	1	mY	1	−J/l	−J/l	(1	+	4a2	x2	/l2	px	pθ	1	mY	px	−	(J/l)pθ	(−J/l)px	+	(1	+	4a2	x2	/l2	)pθ	T	−1	p	=	and	=	J	J	1	+	4a2	x2	2	1	pθ	)	(p2	−	pθ	px	−	pθ	px	+	x	mY	l	l	l2	the	full	Hamiltonian	is	pT	−1	p	=	˜	1	J	1	+	4a2	x2	2	(p2	−	2	pθ	px	+	pθ	)	+	mg(ax2	−	l	cos	θ)	x	2mY	l	l2	plugging	in	my	Y	and	J	H=	1	cos	θ	+	2ax	sin	θ	1	+
4a2	x2	2	(p2	−2	pθ	p	x	+	pθ	)+mg(ax2	−l	cos	θ)	2m(sin	θ	−	2ax	cos	θ)2	x	l	l2	H=	Now	to	find	the	equations	of	motion.	my	px	looked	like	this:	˙	px	=	−	˙	∂H	∂x	∂H	1	−4a	sin	θ	8a2	x	=	[	p	θ	px	+	2	p2	]	θ	2	∂x	2m(sin	θ	−	2ax	cos	θ)	l	l	−	−2(−2a	cos	θ)	cos	θ	+	2ax	sin	θ	1	+	4a2	x2	2	[p2	−	2	pθ	px	+	pθ	]	+	2mgax	2m(sin	θ	−	2ax	cos	θ)3	x	l	l2	3	.	and	mess
inside	the	parenthesis	that	has	p	terms.	the	fraction	out	front.	of	course	pθ	=	−	˙	1	2	sin	θ	4ax	cos	θ	∂H	=	[	−	]pθ	px	2	∂θ	2m[sin	θ	−	2ax	cos	θ]	l	l	+[p2	−	2	x	cos	θ	+	2ax	sin	θ	1	+	4a2	x2	2	−2(cos	θ	+	2ax	sin	θ)	pθ	p	x	+	pθ	][	+	mgl	sin	θ	l	l2	2m[sin	θ	−	2ax	cos	θ]3	−	separating	terms.	you	get	a	monster.	−(cos	θ	+	2ax	sin	θ)	2	p	m[sin	θ	−	2ax	cos	θ]3	x
cos	θ	+	2ax	sin	θ	1	+	4a2	x2	2	pθ	m[sin	θ	−	2ax	cos	θ]3	l2	and	the	longest	one.	pθ	˙	∂H	1	1	+	4a2	x2	2	=	[(cos	θ	+	2ax	sin	θ)(p2	+	pθ	)	x	∂θ	m[sin	θ	−	2ax	cos	θ]3	l2	−	[(sin	θ	−	2ax	cos	θ)2	+	2(cos	θ	+	2ax	sin	θ)2	]	pθ	px	l	4	−	..	[	(sin	θ	−	2ax	cos	θ)2	2(cos	θ	+	2ax	sin	θ)2	+	]pθ	px	lm[sin	θ	−	2ax	cos	θ]3	lm[sin	θ	−	2ax	cos	θ]3	add	them	all	up	for	the
fourth	equation	of	motion..	4a(cos	θ	+	2ax	sin	θ)	2	p	2ml2	[sin	θ	−	2ax	cos	θ]3	θ	4a	cos	θ	p2	2m[sin	θ	−	2ax	cos	θ]3	x	and	the	longest	one..	for	px	:	˙	2a	cos	θ	+	2ax	sin	θ	2	2	−	sin2	θ	+	2ax	sin	θ	cos	θ	∂H	=−	[cos	θp2	+	pθ	−	px	pθ	]−2mgax	x	∂x	m[sin	θ	−	2ax	cos	θ]3	l2	l	Now	for	the	next	one.	2a	[sin2	θ	−	2	−	2ax	cos	θ	sin	θ]pθ	px	lm[sin	θ	−	2ax	cos	θ]3
Adding	them	all	up	yields.	Lets	group	the	p	terms..	pθ	:	˙	∂H	∂θ	Taking	the	derivative.Now	start	simplifying.	24	A	uniform	cylinder	of	radius	a	and	density	ρ	is	mounted	so	as	to	rotate	freely	around	a	vertical	axis.	The	hardest	part	of	this	Lagrangian	to	understand	is	likely	the	translational	energy	due	to	the	particle.	The	moment	of	inertia	of	a	cylinder	is
1	1	M	a2	=	ρπha4	2	2	There	are	three	forms	of	kinetic	energy	in	the	Lagrangian.	and	φ	the	rotational	angle	of	the	cylinder.	the	rotational	energy	of	the	particle.	arrive	at	a	Hamiltonian	for	the	combined	system	of	particle	and	cylinder.	MathWorld	gives	a	treatment	of	this	under	helix.Together	in	all	their	glory:	∂H	1	1	+	4a2	x2	2	[(cos	θ	+	2ax	sin	θ)(p2
+	pθ	)	=	x	∂θ	m[sin	θ	−	2ax	cos	θ]3	l2	−	[(sin	θ	−	2ax	cos	θ)2	+	2(cos	θ	+	2ax	sin	θ)2	]	pθ	px	l	pθ	=	−	˙	px	=	−	˙	cos	θ	+	2ax	sin	θ	2	2	−	sin2	θ	+	2ax	sin	θ	cos	θ	2a	∂H	[cos	θp2	+	pθ	−	=−	px	pθ	]−2mgax	x	3	∂x	m[sin	θ	−	2ax	cos	θ]	l2	l	x=	˙	1	cos	θ	+	2ax	sin	θ	[px	−	pθ	]	m(sin	θ	−	2ax	cos	θ)2	l	˙	θ=	1	+	4a2	x2	1	[−(cos	θ	+	2ax	sin	θ)px	+	pθ	]	ml(sin	θ	−
2ax	cos	θ)2	l	8.	The	relationship	between	height	and	angle	of	rotational	for	a	helix	is	I=	h	=	cθ	Where	c	is	the	distance	between	the	coils	of	the	helix.	Answer:	My	generalized	coordinates	will	be	θ.	Understand	that	if	the	cylinder	was	not	rotating	5	.	The	rotational	energy	of	the	cylinder.	The	only	potential	energy	of	the	system	will	be	the	potential
energy	due	to	the	height	of	the	particle.	On	the	outside	of	the	cylinder	is	a	rigidly	fixed	uniform	spiral	or	helical	track	along	which	a	mass	point	m	can	slide	without	friction.	the	rotational	angle	of	the	particle	with	respect	to	the	cylinder.	Using	any	set	of	coordinates.	and	solve	for	the	motion	of	the	system.	and	the	translational	kinetic	energy	of	the
particle.	Suppose	a	particle	starts	at	rest	at	the	top	of	the	cylinder	and	slides	down	under	the	influence	of	gravity.	˙	then	the	rotational	kinetic	energy	of	the	particle	would	merely	be	m	a2	θ2	.	we	can	solve	for	the	motion	of	the	system.	(duh!)	Here	are	the	EOM:	−	∂H	=	pθ	=	mgc	˙	∂θ	∂H	−	=	pφ	=	0	˙	∂φ	∂H	(I	+	ma2	)pθ	−	ma2	pφ	˙	=θ=	∂pθ	m(a2	+	c2
)(I	+	ma2	)	−	m2	a4	∂H	−ma2	pθ	+	pφ	m(a2	+	c2	)	˙	=φ=	∂pφ	m(a2	+	c2	)(I	+	ma2	)	−	m2	a4	˙	˙	To	solve	for	the	motion.	T	=	ma2	+	mc2	ma2	ma2	I	+	ma2	q=	˙	˙	θ	˙	φ	1	˙2	m	2	˙	˙	2	˙	I	φ	+	[a	(θ	+	φ)	+	c2	θ2	]	+	mgcθ	2	2	Using	the	same	2	by	2	inverse	matrix	form	from	the	previous	problem.	but	2	the	rotation	of	the	cylinder	is	adding	an	additional
rotation	to	the	particle’s	position.	L=	This	is	1	L	=	L0	+	˜	T	q	q	˙	˙	2	Solve	for	T.	lets	use	the	boundary	conditions.	1	+	ma2	)	−	m2	a4	I	+	ma2	−ma2	−ma2	m(a2	+	c2	)	T	−1	=	(ma2	+	mc2	)(I	Now	we	can	find	the	Hamiltonian.	θ(0)	=	φ(0)	=	0	leads	to	pφ	(0)	=	pθ	(0)	=	0	leads	to	pθ	=	mgct	pφ	=	0	6	.	we	may	solve	for	T	−1	.	Lets	write	down	the
Lagrangian.	H=	This	is	H=	p2	(I	+	ma2	)	−	2ma2	pθ	pφ	+	p2	m(a2	+	c2	)	θ	φ	−	mgcθ	2[m(a2	+	c2	)(I	+	ma2	)	−	m2	a4	]	1	p	T	−1	p	−	L0	˜	2	From	the	equations	of	motion.	φ	=	ωt.	the	particle	moves	through	an	angle	ψ	=	θ	+	φ.	we	obtain	φ=	θ=	−mgct2	1	2[mc2	+	2	M	(a2	+	c2	)]	1	(m	+	2	M	)gct2	1	2[mc2	+	2	M	(a2	+	c2	)]	8.	Answer:	In	the
laboratory	system.	Set	up	the	Hamiltonian	for	the	particle	in	an	inertial	system	of	coordinates	and	also	in	a	system	fixed	in	the	rotating	cylinder.˙	˙	Pluggin	and	chuggin	into	θ	and	φ	and	integrating.	Identify	the	physical	nature	of	the	Hamiltonian	in	each	case	and	indicate	whether	or	not	the	Hamiltonians	are	conserved.25	Suppose	that	in	the	previous
exercise	the	cylinder	is	constrained	to	rotate	uniformly	with	angular	frequency	ω.	The	cylinder	moves	uniformly.	yields	the	motion	φ=	−m2	a2	gct2	+	c2	)(I	+	ma2	)	−	m2	a4	]	2[m(a2	θ=	(I	+	ma2	)mgct2	2[m(a2	+	c2	)(I	+	ma2	)	−	m2	a4	]	1	If	we	plug	in	I	=	2	M	a2	where	M	is	the	mass	of	the	cylinder.	so	the	kinetic	energy	T	=	may	be	expressed	1	1	˙	˙
ma2	ψ	2	+	mc2	(ψ	−	ω)2	2	2	The	potential	energy	may	be	written	T	=	U	=	−mgc(ψ	−	ωt)	So	we	have	L=	1	˙	˙	m(a2	ψ	2	+	c2	(ψ	−	ω)2	)	+	mgc(ψ	−	ωt)	2	∂L	˙	˙	=	p	=	ma2	ψ	+	mc2	(ψ	−	ω)	∂q	˙	and	with	H=	1	(˜	−	a)T	−1	(˜	−	a)	−	L0	p	p	2	7	1	1	˙	˙	˙	ma2	(θ	+	φ)2	+	mc2	θ2	2	2	.	we	find	T	−1	from	1	˜	−1	q	T	q	+	qa	+	L0	˙	˙	˙	2	We	can	see	things	better
if	we	spread	out	L	L=	L=	so	L0	=	and	T	=	[ma2	+	mc2	]	T	−1	=	1	m(a2	+	c2	)	1	2	2	mc	ω	+	mgc(ψ	−	ωt)	2	1	1	˙	˙	˙	1	ma2	ψ	2	+	mc2	ψ	2	−	mc2	ω	ψ	+	mc2	ω	2	+	mgc(ψ	−	ωt)	2	2	2	Therefore.	For	the	Hamiltonian	in	the	rotating	cylinder’s	frame.	ψ	=	θ	+	φ	=	θ	+	ωt	˙	˙	˙	˙	ψ	=θ+φ=θ+ω	T	=	1	1	˙	˙	ma2	(θ	+	ω)2	+	mc2	θ2	2	2	U	=	−mgcθ	L=	1	1	˙	˙
ma2	(θ	+	ω)2	+	mc2	θ2	+	mgcθ	2	2	1	L	=	˜	T	q	+	qa	+	L0	q	˙	˙	˙	2	Spread	out	L	1	1	˙	˙	[ma2	+	mc2	]θ2	+	ma2	θω	+	ma2	ω	2	+	mgcθ	2	2	It	becomes	clear	that	L=	8	.	therefore	it	is	not	the	total	energy.	we	have	Hlab	=	(p	−	mc2	ω)2	mc2	ω	2	−	−	mgc(ψ	−	ωt)	2	+	c2	)	2m(a	2	This	is	dependent	on	time.	we	express	the	movement	in	terms	of	the	angle	θ
this	is	with	respect	to	the	cylinder.	for	our	Hamiltonian.	T	=	[ma2	+	mc2	]	T	−1	=	L0	=	Using	again.	9	.	thus	conserved.	it	is	time-independent.	H=	we	may	write	H=	1	(p	−	ma2	ω)2	−	ma2	ω	−	mgcθ	2	+	c2	)	2m(a	2	1	(p	−	a)T	−1	(p	−	a)	−	L0	2	1	ma2	+	mc2	1	ma2	ω	+	mgcθ	2	This	is	not	explicitly	dependent	on	time.	9.	9.	Q	=	q	cos	α	−	p	sin	α	P	=	q
sin	α	+	p	cos	α	satisfies	the	symplectic	condition	for	any	value	of	the	parameter	α.2	Show	that	the	transformation	for	a	system	of	one	degree	of	freedom.16.2.6.	9.	What	is	the	physical	significance	of	the	transformation	for	α	=	0?	For	α	=	π/2?	Does	your	generating	function	work	for	both	of	these	cases?	Answer:	The	symplectic	condition	is	met	if	˜	MJM
=	J	We	can	find	M	from	˙	ζ	=	Mη	˙	which	is	˙	Q	˙	P	We	know	J	to	be	J=	˜	Solving	M	J	M	we	get	˜	M	(J	M	)	=	M	−	sin	α	−	cos	α	−	sin	α	−	cos	α	1	cos	α	−	sin	α	cos	α	−	sin	α	0	1	−1	0	0	−1	1	0	=	cos	α	sin	α	−	sin	α	cos	α	q	˙	p	˙	˜	MJM	=	cos	α	sin	α	−	sin	α	cos	α	=	.31	Michael	Good	Nov	2.Homework	10:	#	9.	2004	9.	Find	a	generating	function	for	the
transformation.	α	=	nπ.	α	=	nπ.	Rearranging	to	solve	for	p(Q.	it	along	with	its	relevant	equation	is	F1	=	−	P	=	q	sin	α	−	Q	cos	α	q	cos2	α	+	sin	α	sin	α	∂F1	∂Q	∂F1	∂q	q	cos	α	Q	+	sin	α	sin	α	P	=−	Integrating	−F1	=	qQ	sin	α	−	1	Q2	cot	α	+	qQ(	−	sin	α)	+	h(q)	2	sin	α	Q2	qQ	cot	α	+	+	h(q)	2	sin	α	−F1	=	−	F1	=	Using	both	F1	’s	we	find	Q2	qQ	cot	α	−	+
h(q)	2	sin	α	Qq	1	+	(q	2	+	Q2	)	cot	α	sin	α	2	This	has	a	problem.	and	have	it	work	for	the	holes.	q)	we	have	p=−	The	related	equation	for	F1	is	p=	Integrating	for	F1	yields	Qq	q	2	cos	α	+	+	g(Q)	sin	α	2	sin	α	Solve	the	other	one.	and	check	at	the	end	if	there	are	problems	with	it.	F2	(q.	But	otherwise	its	ok.Therefore	˜	MJM	=	J	and	the	symplectic
condition	is	met	for	this	transformation.	when	α	=	nπ.	lets	put	the	condition.	It	blows	up.	If	we	solve	for	F2	we	may	be	able	to	find	out	what	the	generating	function	is.	I	will	first	attempt	an	F1	type	and	proceed	to	solve.	sky	high.	q).	that	is	P	(Q.	t)’s	relevant	equations	are	F1	=	−	p=	∂F2	∂q	2	.	To	find	the	generating	function.	P.	or	no	rotation.p=	F2	=
and	P	q	sin	α	−	cos	α	cos	α	Pq	q2	−	tan	α	+	f	(P	)	cos	α	2	∂F2	∂P	Q	=	q	cos	α	−	(P	−	q	sin	α)	tan	α	Q=	F2	=	qP	cos	α	−	F2	=	qP	(cos	α	+	F2	=	So	therefore	1	qP	F2	=	−	(q	2	+	P	2	)	tan	α	+	2	cos	α	1	This	works	for	α	=	nπ	but	blows	sky	high	for	α	=	(n+	2	)π.	So	I’ll	put	a	con1	dition	on	F2	that	α	=	(n	+	2	)π.	The	physical	significance	of	this
transformation	for	α	=	0	is	easy	to	see	cause	we	get	P2	sin2	α	tan	α	+	qP	+	g(q)	2	cos	α	1	P2	−	cos	α)	−	tan	α	+	g(q)	cos	α	2	P2	qP	−	tan	α	+	g(q)	cos	α	2	Q	=	q	cos	0	−	p	sin	0	=	q	P	=	q	sin	0	−	p	cos	0	=	p	This	is	just	the	identity	transformation.	For	α	=	π/2	we	get	π	π	−	p	sin	=	−p	2	2	π	π	P	=	q	sin	−	p	cos	=	q	2	2	Where	the	p’s	and	q’s	have	been
exchanged.	Q	=	q	cos	3	.	9.	•	Show	that	the	function	that	generates	this	transformation	is	F3	=	−(eQ	−	1)2	tan	p	Answer:	Q	and	P	are	considered	canonical	variables	if	these	transformation	equations	satisfy	the	symplectic	condition.	P	are	canonical	variables	if	q	and	p	are.	˜	MJM	=	J	Finding	M	:	˙	ζ	=	Mη	˙	˙	Q	˙	P	Mij	=	∂ζi	∂ηj	q	˙	p	˙	∂Q	∂q	∂P	∂q	∂Q	∂p
∂P	∂p	=M	M=	q	−1/2	cos	p	∂Q	=	∂q	2(1	+	q	1/2	cos	p)	∂Q	−q	1/2	sin	p	=	∂p	1	+	q	1/2	cos	p	∂P	=	q	−1/2	sin	p	+	2	cos	p	sin	p	∂q	∂P	=	2q	1/2	cos	p	+	2q	cos2	p	−	2q	sin2	p	∂p	Remembering	cos2	A	−	sin2	A	=	cos	2A	and	2	sin	A	cos	A	=	sin	2A	cos(A	−	B)	=	cos	A	cos	B	+	sin	A	sin	B	4	.6	The	transformation	equations	between	two	sets	of	coordinates	are	Q
=	log(1	+	q	1/2	cos	p)	P	=	2(1	+	q	1/2	cos	p)q	1/2	sin	p	•	Show	directly	from	these	transformation	equations	that	Q.	and	we	are	left	with	some	algebra	for	the	off-diagonal	terms.	eh?	Suddenly	ugly	became	pretty.	To	show	that	F3	=	−(eQ	−	1)2	tan	p	5	.	The	same	works	for	messy	except	it	becomes	positive	1	because	it	has	no	negative	terms	out	front.
So	finally	we	get	˜	M	JM	=	0	−1	1	0	=J	which	is	the	symplectic	condition.	˜	M	JM	=	Lets	solve	for	ugly.	which	proves	Q	and	P	are	canonical	variables.	q	−1/2	cos	p	2(1+q	1/2	cos	p)	−1/2	−q	1/2	sin	p	1+q	1/2	cos	p	JM	=	0	−1	1	0	q	sin	p	+	sin	2p	2q	1/2	cos	p	+	2q	cos	2p	JM	=	Now	q	−1/2	sin	p	+	sin	2p	q	−1/2	cos	p	−	2(1+q1/2	cos	p)	2q	1/2	cos	p	+	2q
cos	2p	q	1/2	sin	p	1+q	1/2	cos	p	˜	M	JM	=	q	−1/2	cos	p	2(1+q	1/2	cos	p)	−q	1/2	sin	p	1+q	1/2	cos	p	q	−1/2	sin	p	+	sin	2p	2q	1/2	cos	p	+	2q	cos	2p	q	−1/2	sin	p	+	sin	2p	q	−1/2	cos	p	−	2(1+q1/2	cos	p)	2q	1/2	cos	p	+	2q	cos	2p	q	1/2	sin	p	1+q	1/2	cos	p	You	may	see	that	the	diagonal	terms	disappear.we	can	proceed	with	ease.	q	−1/2	cos	p	−q	1/2	sin	p
(q	−1/2	sin	p+sin	2p)−	(2q	1/2	cos	p+2q	cos	2p)	1	+	q	1/2	cos	p	2(1	+	q	1/2	cos	p)	ugly	=	−	sin2	p	−	q	1/2	sin	p	sin	2p	−	cos2	p	−	q	1/2	cos	p	cos	2p	1	+	q	1/2	cos	p	ugly	=	−(1	+	q	1/2	(cos	2p	cos	p	+	sin	2p	sin	p))	1	+	q	1/2	cos	p	ugly	=	−(1	+	q	1/2	cos	p)	=	−1	1	+	q	1/2	cos	p	0	ugly	messy	0	ugly	=	Not	so	ugly	anymore.	obtain	formulas	for	evaluating
the	Poisson	brackets	˙	[φ.	f]	I1	sin2	θ	6	.	and	f	is	any	arbitrary	function	of	the	Euler	angles.	Answer:	Poisson	brackets	are	defined	by	[u.	we	learned	I1	b	−	I1	a	cos	θ	pφ	−	pψ	cos	θ	˙	=	φ=	I1	sin2	θ	I1	sin2	θ	So	calculating	˙	[φ.	v]q.	9.	f	(θ.	ψ)]	where	θ.	ψ)]	˙	[ψ.	and	then	solve	for	our	transformation	equations.	φ.	and	ψ	are	the	Euler	angles.p	=	∂u	∂v	∂u	∂v
−	∂qi	∂pi	∂pi	∂qi	From	Goldstein’s	section	on	Euler	angles.	φ.generates	this	transformation	we	may	take	the	relevant	equations	for	F3	.	f	]	=	[	pφ	−	pψ	cos	θ	.	P	=	2(1	+	q	1/2	cos	p	−	1)	tan	p(1	+	q	1/2	cos	p)	P	=	2q	1/2	sin	p(1	+	q	1/2	cos	p)	Thus	F3	is	the	generating	function	of	our	transformation	equations.16	For	a	symmetric	rigid	body.	f	(θ.	φ.	now
lets	plug	this	into	the	expression	for	P	and	put	P	in	terms	of	q	and	p	to	get	the	other	one.	q=−	P	=−	Solving	for	Q	q	=	(eQ	−	1)2	sec2	p	√	1+	q	=	eQ	∂F3	=	−[−(eQ	−	1)2	sec2	p]	∂p	∂F3	=	−[−2(eQ	−	1)	tan	p]eQ	∂Q	sec2	p	Q	=	ln(1	+	q	1/2	cos	p)	This	is	one	of	our	transformation	equations.	solve	them.	f	]	=	For	the	next	relation.	ω	=	7	.	f	]	=	1	∂f	∂f	(I3
cos	θ	−	(I3	cos2	θ	+	I1	sin2	θ)	)	∂φ	∂ψ	I3	I1	sin2	θ	Both	together.	t)	=	ln(p	+	imωq)	−	iωt.Note	that	f	=	f	(θ.	f	]	=	∂f	1	∂f	2	(−	∂ψ	+	∂ψ	cos	θ)	I1	sin	θ	1	∂f	∂f	2	2	2	(I3	cos	θ	∂φ	−	(I3	cos	θ	+	I1	sin	θ)	∂ψ	)	I3	I1	sin	θ	9.	p.	f	]	=	−(	1	cos2	θ	∂f	cos	θ	∂f	)	+	−(−	)	+	I3	I1	sin2	θ	∂ψ	I1	sin2	θ	∂ψ	˙	∂	ψ	∂f	∂pi	∂qi	1	cos	θ	∂f	∂f	)+(	)	I1	sin2	θ	∂φ	I1	sin2	θ	∂ψ	1	∂f	∂f	(−	+
cos	θ)	I1	sin2	θ	∂ψ	∂ψ	I1	sin2	θ	I3	cos	θ	∂f	I3	cos2	θ	∂f	˙	[ψ.	f	]	=	−	˙	∂	φ	∂f	∂pi	∂qi	˙	Taking	only	two	derivatives	because	φ	doesn’t	depend	on	pθ	.	f	]	=	˙	[ψ.	So	our	definition	becomes	˙	[φ.31	Show	by	the	use	of	Poisson	brackets	that	for	one-dimensional	harmonic	oscillator	there	is	a	constant	of	the	motion	u	defined	as	k	m	What	is	the	physical
significance	of	this	constant	of	motion?	u(q.	ψ)	and	not	of	momenta.	f	]	=	−	and	pψ	pφ	−	pψ	cos	θ	˙	ψ=	cos	θ	−	I3	I1	sin2	θ	This	yields	˙	[ψ.	˙	[ψ.	We	get	˙	[φ.	f	]	=	(−	˙	[φ.	f	]	=	−(	+	2	2	)	∂ψ	+	I3	I1	sin	θ	I3	I1	sin	θ	I3	I1	sin2	θ	∂φ	˙	[ψ.	in	final	form	˙	[φ.	φ.	Answer:	Goldstein	verifies	Jacobi’s	identity	[u.	u]]	+	[w.	p)	=	So	we	have	du	∂u	∂H	∂u	∂H	∂u	=	−	+
dt	∂q	∂p	∂p	∂q	∂t	du	imω	p	1	=	(	)−	(kq)	−	iω	dt	p	+	imωq	m	p	+	imωq	du	iωp	−	kq	iωp	−	mω	2	q	=	−	iω	=	−	iω	dt	p	+	imωq	p	+	imωq	p	+	iωmq	du	=	iω	−	iω	=	iω	−	iω	dt	p	+	imωq	du	=0	dt	Its	physical	significance	relates	to	phase.	w]]	+	[v.	Show	[f.	[v.	The	Hamiltonian	is	H(q.	gh]	=	g[f.	I	will	follow	his	lead.	[u.	H]	+	dt	∂t	which	we	must	prove	equals
zero	if	u	is	to	be	a	constant	of	the	motion.	kq	2	p2	+	2m	2	Show	Jacobi’s	Identity	holds.	v]]	=	0	using	an	efficient	notation.Answer:	We	have	du	∂u	=	[u.	h]	+	[f.	v]	=	ui	Jij	vj	8	.	If	we	say	ui	≡	∂u	∂ηi	vij	≡	∂v	∂ηi	∂ηj	Then	a	simple	way	of	expressing	the	Poisson	bracket	becomes	apparent	[u.	[w.	g]h	where	the	brackets	are	Poisson.	u]]	+	[w.	[v.	gh]	=	[f.	Add
them	up.	g]h	+	g[f.	gh]	=	∂f	∂g	∂f	∂h	∂f	∂h	∂f	∂g	h−	h+g	−g	∂qi	∂pi	∂pi	∂qi	∂qi	∂pi	∂pi	∂qi	[f.	w]]	+	[v.	Here	we	have	[u.This	notation	becomes	valuable	when	expressing	the	the	double	Poisson	bracket.	[u.	u]].	w	we	see	there	are	only	two	terms	that	show	up	Jij	Jkl	ui	vk	wlj	and	Jji	Jkl	ui	vk	wjl	The	first	from	[u.	gh]	=	Grouping	terms	[f.	remembering	Jkl	are
just	constants.	[w.	[w.	w]]	=	ui	Jij	(vkj	Jkl	wl	+	vk	Jkl	wlj	)	doing	this	for	the	other	two	double	Poisson	brackets.	[v.	v]]	=	0	Its	ok	to	do	the	second	property	the	long	way:	[f.	gh]	=	[f.	Looking	at	one	double	partial	term.	[v.	w]j	=	ui	Jij	(vk	Jkl	wl	)j	Taking	the	partial	with	respect	to	ηj	we	use	the	product	rule.	realizing	order	of	partial	is	immaterial.
Therefore	[u.	w]]	=	ui	Jij	[v.	[v.	for	a	total	of	6.	h]	∂f	∂(gh)	∂f	∂(gh)	−	∂qi	∂pi	∂pi	∂qi	∂f	∂g	∂h	∂f	∂h	∂g	(	h+g	)−	(g	+	h)	∂qi	∂pi	∂pi	∂pi	∂qi	∂qi	9	.	we	get	4	more	terms.	[u.	w]]	and	the	second	from	[v.	and	J	is	antisymmetric:	(Jij	+	Jji	)Jkl	ui	vk	wlj	=	0	All	the	other	terms	are	made	of	second	partials	of	u	or	v	and	disappear	in	the	same	manner.	•	Use	the	results
above	to	reduce	to	quadratures	the	problem	of	point	particle	of	mass	m	moving	in	the	gravitational	field	of	two	unequal	mass	points	fixed	on	the	z	axis	a	distance	2a	apart.	z.	2004	10.Homework	11:	#	10.	v.	and	means	to	just	get	the	problem	into	a	form	where	the	only	thing	left	to	do	is	take	an	integral.	φ	by	the	equations.7	•	A	single	particle	moves	in
space	under	a	conservative	potential.	10.	Set	up	the	Hamilton-Jacobi	equation	in	ellipsoidal	coordinates	u.	φ)	is	the	equation	separable.	This	is	an	old	usage	of	the	word	quadratures.	Answer:	Let’s	obtain	the	Hamilton	Jacobi	equation.	This	will	be	used	to	reduce	the	problem	to	quadratures.	v.7	b.	r	=	a	sinh	v	sin	u	z	=	a	cosh	v	cos	u	For	what	forms	of	V
(u.	10.26	Michael	Good	Nov	2.	φ	defined	in	terms	of	the	usual	cylindrical	coordinates	r.17.	Here	T	=	1	2	1	1	˙	mr	+	mz	2	+	mr2	φ2	˙	˙	2	2	2	r	=	a	sinh	v	sin	u	r	=	a	cosh	v	sin	uv	+	a	sinh	v	cos	uu	˙	˙	˙	z	=	a	cosh	v	cos	u	z	=	a	sinh	v	cos	uv	−	a	cosh	v	sin	uu	˙	˙	˙	Here	r2	+	z	2	=	a2	(cosh2	v	sin2	u+sinh2	v	cos2	u)(v	2	+	u2	)	=	a2	(sin2	u+sinh2	v)(v	2	+	u2
)	˙	˙	˙	˙	˙	˙	1	.	φ)	=	(sin2	u+sinh2	v)E	2ma2	∂u	∂v	2ma2	sinh2	v	sin2	u	φ	A	little	bit	more	work	is	necessary.To	express	in	terms	of	momenta	use	pv	=	pu	=	∂L	=	ma2	(sin2	u	+	sinh2	v)v	˙	∂v	˙	∂L	=	ma2	(sin2	u	+	sinh2	v)u	˙	∂u	˙	because	the	potential	does	not	depend	on	v	or	u.	I	suggest	drawing	a	picture.	with	the	origin	being	between	them.	the
principle	function	applies	S	=	Wu	+	Wv	+	αφ	φ	−	Et	So	our	Hamilton	Jacobi	equation	is	1	∂Wu	2	∂Wv	2	1	∂Wφ	2	[(	)	+(	)	]+	(	)	+V	(u.	at	which	point	we	will	have	only	integrals	to	take.	|r	aˆ|2	=	(z	z	a)2	+	r2	Using	the	results	from	part	(a)	for	r	and	z.	with	two	point	masses	on	the	z	axis.	|r	aˆ|2	=	a2	(cosh	v	cos	u	z	2	1)2	+	a2	sinh2	v	sin2	u	.	so	they	are
each	a	distance	a	from	the	origin.	remembering	we	are	in	cylindrical	coordinates.	φ)	we	can	then	separate	this	equation	into	u.	The	potential	is	then	formed	from	two	pieces	V	=−	GmM1	GmM2	−	|r	−	aˆ|	|r	+	aˆ|	z	z	To	solve	for	the	denominators	use	the	Pythagorean	theorem.	v.	The	cyclic	coordinate	φ	˙	˙	yields	a	constant	I’ll	call	αφ	˙	pφ	=	mr2	φ	=
αφ	So	our	Hamiltonian	is	H=	p2	p2	+	p	2	φ	u	v	+	+V	2	2	(sin2	u	+	sinh	v)	2	sinh2	v	sin2	u	2ma	2ma	To	find	our	Hamilton	Jacobi	expression.	φ)	=	E	2	2	sinh2	v	sin2	u	∂v	∂φ	u	+	sinh	v)	∂u	2ma	2ma2	(sin2	This	is	∂Wu	2	∂Wv	2	1	1	1	1	[(	)	+(	)	]+	(	+	)α2	+(sin2	u+sinh2	v)V	(u.	Once	we	solve	for	V	(u.	v.	v	and	φ	parts.	v.	introducing	another	constant.|r	aˆ|2
=	a2	(cosh2	v	cos2	u	z	2	cosh	v	cos	u	+	1	+	sinh2	v	sin2	u)	Lets	rearrange	this	to	make	it	easy	to	see	the	next	step.	and	go	ahead	and	separate	out	u	and	v	terms.	A:	2	αφ	1	1	∂Wu	2	1	−	Gm(M1	−	M2	)	cos	u	−	E	sin2	u	=	A	(	)	+	2ma2	∂u	2ma2	sin2	u	a	2	αφ	1	∂Wv	2	1	1	(	)	+	−	Gm(M1	−	M2	)	cosh	v	−	E	sinh2	v	=	−A	2	2	2ma	∂v	2ma	sinh2	v	a	The
problem	has	been	reduced	to	quadratures.	|r	aˆ|2	=	a2	(sinh2	v	sin2	u	+	cosh2	v	cos2	u	+	1	z	2	cosh	v	cos	u)	Now	convert	the	sin2	u	=	1	−	cos2	u	and	convert	the	cosh2	v	=	1	+	sinh2	v	|r	aˆ|2	=	a2	(sinh2	v	+	cos2	u	+	1	z	2	2	cosh	v	cos	u)	Add	the	1	and	cosh	v	|r	aˆ|2	=	a2	(cosh2	v	+	cos2	u	z	|r	So	our	potential	is	now	V	=−	V	=−	GmM2	GmM1	−
a(cosh	v	−	cos	u)	a(cosh	v	+	cos	u)	aˆ|2	=	(a(cosh	v	z	2	cosh	v	cos	u)	cos	u))2	1	GmM1	(cosh	v	+	cos	u)	+	GmM2	(cosh	v	−	cos	u)	a	cosh2	v	−	cos2	u	Note	the	very	helpful	substitution	cosh2	v	−	cos2	u	=	sin2	u	+	sinh2	v	Allowing	us	to	write	V	V	=−	1	GmM1	(cosh	v	+	cos	u)	+	GmM2	(cosh	v	−	cos	u)	a	sin2	u	+	sinh2	v	Plug	this	into	our	Hamilton	Jacobi
equation.	3	.	10.	and	a	cyclic	coordinate	has	the	characteristic	component	Wqi	=	qi	αi	.	αx	.	y.	y.	Answer:	I’m	going	to	assume	the	angle	is	θ	because	there	are	too	many	α’s	in	the	problem	to	begin	with.	y.	α.	we	set	up	the	Hamiltonian-Jacobi	equation	by	setting	p	=	∂S/∂q	and	we	get	H=	1	∂S	2	1	∂S	2	∂S	(	)	+	(	)	+	mgy	+	=0	2m	∂x	2m	∂y	∂t	The	principle
function	is	S(x.	assuming	the	projectile	is	fired	off	at	time	t	=	0	from	the	origin	with	the	velocity	v0	.	p2	p2	y	x	+	+	mgy	2m	2m	Following	the	examples	in	section	10.	it	is	cyclic.	α)	−	αt	Expressed	in	terms	of	the	characteristic	function.	Find	both	the	equation	of	the	trajectory	and	the	dependence	of	the	coordinates	on	time.	α)	=	−	1	2	(2mα	−	αx	−	2m2
gy)3/2	3m2	g	2	2mα	−	αx	−	2m2	gy	Thus	our	principle	function	is	S(x.	αx	.	S(x.2.	First	we	find	the	Hamiltonian.17	Solve	the	problem	of	the	motion	of	a	point	projectile	in	a	vertical	plane.	t)	=	xαx	+	−	Solving	for	the	coordinates.	t)	=	Wx	(x.	t)	=	xαx	+	Wy	(y.	α.	making	an	angle	θ	with	the	horizontal.	α.	αx	)	+	Wy	(y.	we	have	Wy	(y.	we	get	for	our
HamiltonianJacobi	equation	2	1	∂Wy	2	αx	+	(	)	+	mgy	=	α	2m	2m	∂y	This	is	∂Wy	=	∂y	Integrated.	using	the	Hamilton-Jacobi	method.	α)	−	αt	Because	x	is	not	in	the	Hamiltonian.	1	2	(2mα	−	αx	−	2m2	gy)3/2	−	αt	3m2	g	4	.	αx	.	x(t)	=	βx	+	x(0)	=	0	→	βx	=	−	αx	β	m	2	α	αx	g	−	=0	y(0)	=	0	→	−	β	2	+	2	mg	2m2	g	αx	m	y(0)	=	v0	sin	θ	=	−gβ	˙	x(0)	=	v0	cos	θ
=	˙	Thus	we	have	for	our	constants	β=	βx	=	α=	v0	sin	θ	−g	2	v0	cos	θ	sin	θ	g	2	mg	2	2	mv0	2	(v0	sin	θ	+	v0	cos2	θ)	=	2g	2	αx	=	mv0	cos	θ	Now	our	y(t)	is	2	g	v0	sin	θ	2	v0	v	2	cos2	θ	y(t)	=	−	(t	+	)	+	−	0	2	g	g	2g	2	2	g	v0	sin2	θ	v0	v	2	cos2	θ	g	y(t)	=	−	t2	+	v0	sin	θt	−	+	−	0	2	2	g2	g	2g	5	.β=	βx	=	∂S	1	2	=−	(2mα	−	αx	−	2m2	gy)1/2	−	t	∂α	mg	∂S	αx	2	=
x	+	2	(2mα	−	αx	−	2m2	gy)1/2	∂αx	m	g	Solving	for	both	x(t)	and	y(t)	in	terms	of	the	constants	β.	βx	.	α	and	αx	2	g	αx	α	y(t)	=	−	(t	+	β)2	+	−	2	mg	2m2	g	x(t)	=	βx	+	Our	x(t)	is	αx	1	2	(−	(2mα	−	αx	−	2m2	gy)1/2	)	m	mg	αx	(β	+	t)	m	We	can	solve	for	our	constants	in	terms	of	our	initial	velocity.	and	angle	θ	through	initial	conditions.	φ.	E.	we	get	H=	p2
p2	(pφ	−	pψ	cos	θ)2	ψ	+	M	gh	cos	θ	+	θ	+	2I3	2I1	2I1	sin2	θ	Setting	up	the	principle	function.63).	solved	for	the	partial	S’s	2	αψ	1	∂Wθ	2	(αφ	−	αψ	cos	θ)2	+	(	)	+	+	M	gh	cos	θ	=	E	2I3	2I1	∂θ	2I1	sin2	θ	Turning	this	inside	out:	6	.	and	obtain	the	formal	solution	to	the	motion	as	given	by	Eq.	αψ	.	(5.	in	the	Hamilton-Jacobi	mehtod.	E)	+	ψαψ	+	φαφ	−	Et
Using	∂S	=p	∂q	we	have	for	our	Hamilton-Jacobi	equation.	with	one	point	fixed.	u(t)	t=	u(0)	du	(1	−	u2	)(α	−	βu)	−	(b	−	au)2	Expressing	the	Hamiltonian	in	terms	of	momenta	like	we	did	in	the	previous	problem.	Answer:	This	is	the	form	we	are	looking	for.	we	see	S(θ.	t)	=	Wθ	(θ.26	Set	up	the	problem	of	the	heavy	symmetrical	top.	ψ.g	y(t)	=	−	t2	+	v0
sin	θt	2	and	for	x(t)	x(t)	=	2	v0	v0	sin	θ	cos	θ	sin	θ	+	v0	cos	θ	+	v0	cos	θt	g	−g	x(t)	=	v0	cos	θt	Together	we	have	g	y(t)	=	−	t2	+	v0	sin	θt	2	x(t)	=	v0	cos	θt	10.	noting	the	cyclic	coordinates.	αφ	.	E)	=	∂θ	When	integrated.	the	value	of	θ	is	θ(t)	θ(t)	t=	θ(0)	dθ	(α	−	(b−a	cos	θ)2	sin2	θ	−	β	cos	θ)1/2	The	integrand	is	the	exact	expression	as	Goldstein’s
(5.62).∂	Wθ	(θ.	Making	the	substitution	u	=	cos	θ	we	arrive	home	u(t)	t=	u(0)	du	(1	−	u2	)(α	−	βu)	−	(b	−	au)2	7	.	2I1	E	−	2	αψ	I1	I3	−	(αφ	−	αψ	cos	θ)2	−	2I1	M	gh	cos	θ	sin2	θ	Wθ	=	(2I1	E	−	2	αψ	I1	(αφ	−	αψ	cos	θ)2	−	−	2I1	M	gh	cos	θ)1/2	dθ	I3	sin2	θ	Now	we	are	in	a	position	to	solve	βθ	=	∂Wθ	=	βθ	+	t	=	∂E	∂Wθ	∂S	=	−t	∂E	∂E	2I1	dθ	2(2I1	E	−	α2
I1	ψ	I3	−	(αφ	−αψ	cos	θ)2	sin2	θ	−	2I1	M	gh	cos	θ)1/2	Using	the	same	constants	Goldstein	uses	α=	2E	−	2	αψ	2E	−	I1	I1	I3	I1	2M	gl	β=	I1	α2	ψ	I3	=	where	αφ	=	I1	b	αψ	=	I1	a	and	making	these	substitutions	βθ	+	t	=	(I1	(2E	−	βθ	+	t	=	I1	dθ	α2	ψ	I3	)	2	−	I1	(b−a	cos	θ)	−	I1	2M	gh	cos	θ)1/2	sin2	θ	2	dθ	(α	−	(b−a	cos	θ)2	sin2	θ	−	β	cos	θ)1/2	For	time	t.
27.	which	is	Goldstein’s	(10.	2004	10.	where	F	is	a	constant.	10.	we	have	only	the	first	quadrant.	Using	action-angle	variables.Homework	12:	#	10.	Multiply	this	by	4	for	all	of	phase	space	and	our	action	variable	J	becomes	E/F	J	=4	0	√	2m	E	−	F	q	dq	A	lovely	u-substitution	helps	out	nicely	here.	Solution:	Define	the	Hamiltonian	of	the	particle	p2	+	F
|q|	2m	Using	the	action	variable	definition.	integrated	from	q	=	0	to	q	=	E/F	(where	p	=	0).82):	H≡E=	J=	we	have	J=	2m(E	−	F	q)	dq	p	dq	For	F	is	greater	than	zero.13	A	particle	moves	in	periodic	motion	in	one	dimension	under	the	influence	of	a	potential	V	(x)	=	F	|x|.	find	the	period	of	the	motion	as	a	function	of	the	particle’s	energy.	Cylinder
Michael	Good	Nov	28.	u	=	E	−	Fq	0	→	√	2mu1/2	du	=	−F	dq	1	du	−F	√	8	2m	3/2	du	=	E	3F	J	=4	E	J=	4	2m	F	√	E	u1/2	0	1	.13.	.Goldstein’s	(10.	τ=	This	is	√	∂	8	2m	3/2	τ=	[	E	]	∂E	3F	And	our	period	is	√	4	2mE	τ=	F	10.	Express	the	motion	in	terms	of	J	and	its	conjugate	angle	variable.95)	may	help	us	remember	that	∂H	=ν	∂J	and	because	E	=	H	and	τ	=
1/ν.	involving	two	degrees	of	freedom.	2	Using	the	form	of	the	Hamiltonian..(eq’n	10..	H=	U	(r0	)	=	−	l2	3	+	V	(r0	)	=	0	mr0	2	∂J	∂E	.	U	(r)	the	Hamiltonian	becomes	H=	1	2	p	+	U	(r)	2m	r	The	r0	from	above	will	be	some	minimum	of	U	(r).	Taylor	series	go	like	1	(x	−	a)2	f	(a)	+	.	f	(x)	=	f	(a)	+	(x	−	a)f	(a)	+	1	U	(r)	=	U	(r0	)	+	(r	−	r0	)U	(r0	)	+	(r	−	r0	)2
U	(r0	)	+	.27	Describe	the	phenomenon	of	small	radial	oscillations	about	steady	circular	motion	in	a	central	force	potential	as	a	one-dimensional	problem	in	the	action-angle	formalism.65)	we	have	1	2	l2	(p	+	)	+	V	(r)	2m	r	r2	Defining	a	new	equivalent	potential.	find	the	period	of	the	small	oscillations.	2!	Lets	expand	around	some	r0	for	our	potential..
in	polar	coordinates.	With	a	suitable	Taylor	series	expansion	of	the	potential.	Solution:	As	a	reminder.	Thus	our	Hamiltonian	becomes	H=	This	is	H=	H=	1	1	2	p	+	U	(r0	)	+	(r	−	r0	)2	U	(r0	)	2m	r	2	1	2	p	+	U	(r0	+	λ)	2m	r	1	2	1	p	+	U	(r0	)	+	λ2	U	(r0	)	=	E	2m	r	2	If	we	use	the	small	energy	defined	as	=	E	−	U	(r0	)	We	see	1	2	1	2	p	+	λ	k	2m	r	2	This
energy	is	the	effect	on	the	frequency.The	second	derivative	is	the	only	contribution	U	=	3l2	4	+	V	(r0	)	=	k	mr0	where	k	>	0	because	we	are	at	a	minimum	that	is	concave	up.6	=	=	We	have	for	the	action	variable	J	=	2π	and	a	period	τ=	with	motion	given	by	r	=	r0	+	J	sin	2πω	πmω	mJω	cos	2πω	π	3	∂J	=	2π	∂	m	k	m	k	Jω	2π	pr	=	.	so	following	section	10.
If	there	is	a	small	oscillation	about	circular	motion	we	may	let	r	=	r0	+	λ	where	λ	will	be	very	small	compared	to	r0	.	Solution:	Trivially.	one	for	θ	and	one	for	z.	The	time	it	takes	to	fall	is	the	same	time	it	takes	to	bounce	up.	T	=2	2h	g	→	νz	=	1	2	g	2h	To	derive	these	frequencies	via	the	action-angle	formulation	we	first	start	by	writing	down	the
Hamiltonian	for	the	particle.	Eθ	=	2	p2	Jθ	θ	=	2mR2	4π	2	2mR2	4	.	Find	the	two	frequencies	of	its	motion	using	the	action	angle	variable	formulation.	Breaking	the	energy	into	two	parts.	we	know	the	frequency	around	the	cylinder	to	be	its	angular	speed	divided	by	2π	because	it	goes	2π	radians	in	one	revolution.	It	is	released	and	bounces	around	the
perimeter.	we	may	find	the	frequency	of	its	up	and	down	bouncing	through	Newtonian’s	equation	of	motion.	H	≡	E	=	mgz	+	˙	pθ	=	mθR2	we	may	write	Jθ	=	2πpθ	based	on	Goldstein’s	(10.101).	and	because	θ	does	not	appear	in	the	Hamiltonian.A	particle	is	constrained	to	the	edge	of	a	cylinder.	νθ	=	h=	1	2	gt	2	2h	g	t=	Multiply	this	by	2	because	the
period	will	be	measured	from	a	point	on	the	bottom	of	the	cylinder	to	when	it	next	hits	the	bottom	of	the	cylinder	again.	by	symmetry.	and	his	very	fine	explanation.	we	may	express	the	Eθ	part	as	a	function	of	Jθ	.	p2	p2	z	θ	+	2m	2mR2	Noting	that	pθ	is	constant	because	there	is	no	external	forces	on	the	system.	˙	θ	2π	And	also	simply.	therefore	it	is
cyclic	and	its	conjugate	momentum	is	constant.	The	frequency	is	νθ	=	∂Eθ	Jθ	=	2	mR2	∂Jθ	4π	νθ	=	Thus	we	have	˙	Jθ	2πpθ	pθ	mθR2	=	=	=	4π	2	mR2	4π	2	mR2	2πmR2	2πmR2	˙	θ	2π	The	second	part	is	a	bit	more	involved	algebraically.	its	potential	energy	when	released	from	rest.	Only	the	second	part	remains:	Jz	=	Solved	in	terms	of	Ez	3	Ez	=	(	g	4
The	frequency	is	νz	=	∂Ez	2	3	=(	(	g	∂Jz	3	4	m	2/3	1	)	)	1/3	2	J	m	Jz	)2/3	2	4√	1	3/2	2m	E	3	mg	z	5	.	Expressing	the	energy	for	z:	νθ	=	Ez	=	mgz	+	Solving	for	pz	and	plugging	into	J=	we	get	Jz	=	2.	√	2	−1	Jz	=	2	2m	(Ez	−	mgz)3/2	(	)	3	mg	h	0	p2	z	2m	p	dq	√	2m	(Ez	−	mgz)1/2	dz	we	can	do	this	closed	integral	by	integrating	from	0	to	h	and	multiplying	by
The	original	energy	given	to	it	in	the	z	direction	will	be	mgh.	Thus	the	first	part	of	this	evaluated	integral	is	zero.	As	you	may	already	see	there	are	many	different	steps	to	take	to	simplify.	I’ll	show	one.	Yay!	Our	two	frequencies	together	νθ	=	νz	=	1	2	˙	θ	2π	g	2h	The	condition	for	the	same	path	to	be	retraced	is	that	the	ratio	of	the	frequencies	to	be	a
rational	number.	that	the	m’s	cancel.	6	.	and	the	constant	part	becomes	g	1/2	h1/2	The	number	part	simplifies	down	to	1	√	2	2	Thus	we	have	1	νz	=	√	2	2	1	g	=	h	2	g	2h	as	we	were	looking	for	from	Newton’s	trivial	method.	Lets	gather	the	numbers.	2	3	νz	=	(	(	g	3	4	m	2/3	)	)	2	[	1	4	3g	2	3/2	]1/3	m	(mgh)	Now	we	have	a	wonderful	mess.	with	some
careful	observation.	This	is	explained	via	closed	Lissajous	figures	and	two	commensurate	expressions	at	the	bottom	of	page	462	in	Goldstein.All	we	have	to	do	now	is	plug	what	Jz	is	into	this	expression	and	simplify	the	algebra.	and	the	constants	to	one	side	νz	=	2	3	2/3	1	3(4)	21/3	4	(	3	)1/3	21/6	g	2/3	m1/3	g	1/3	m1/6	m1/2	g	1/2	h1/2	You	may	see.
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