
	

Continue

https://feedproxy.google.com/~r/Gsjc/~3/5bhJmFgkeCE/uplcv?utm_term=using+similes+in+writing

Using	similes	in	writing

Using	similes	in	your	writing.	How	to	use	metaphor	in	writing.	Using	similes	in	persuasive	writing.	Why	do	we	use	similes	in	writing.	How	to	use	similes	in	a	sentence.	Using	similes	and	metaphors	in	descriptive	writing.

While	the	space	shuttle	of	120	tons	is	surrounded	by	almost	4	million	pounds	of	rocket	fuel,	exhaling	harmful	fumes,	visibly	impatient	to	challenge	gravity,	on-board	computers	take	the	command.	Four	identical	machines,	with	the	same	software,	extract	information	from	thousands	of	sensors,	take	hundreds	of	millisecond	decisions,	vote	for	any
decision,	control	each	other	250	times	per	second.	A	fifth	computer,	equipped	with	a	different	software,	is	ready	to	take	control	in	case	of	malfunctioning	of	the	other	four.at	â	€	"6.6	seconds,	if	the	pressures,	pumps	and	temperatures	are	nominal,	computers	give	€	™	Order	to	turn	on	the	main	shuttle	motors	â	€	œ	Each	of	the	three	motors	that	shoot
at	160	milliseconds	away,	tons	of	super-cooled	liquid	fuel	pour	into	the	combustion	chambers.	The	ship	oscillating	on	its	launch	ramp,	grounded	only	by	bolts.	While	the	main	engines	reach	a	million	pounds	of	thrust,	their	drains	shrink	in	blue	flame	diamonds.	Then,	and	only	then,	at	less	zero	seconds,	if	the	computers	are	convinced	that	the	engines
work	properly,	they	give	the	order	to	turn	on	the	full	rockets.	In	less	than	a	second,	they	reach	6.6	million	pounds	of	thrust.	And	at	the	same	time,	computers	give	the	order	to	explode	the	explosive	bolts,	and	4.5	million	pounds	of	spatial	vehicles	are	raised	majestically	by	its	launch	ramp.	It	is	an	incredible	demonstration	of	hardware	ability.	But	no
human	being	presses	a	button	to	make	it	happen,	no	astronaut	jockey	a	joy	stick	to	adjust	the	shuttle	in	orbit.	The	right	thing	is	the	software.	The	software	gives	the	order	to	card	the	main	engines,	performing	the	dramatic	belly	that	the	shuttle	does	immediately	after	clearing	the	tower.	The	software	chokes	the	engines	to	make	sure	the	boat	does	not
accelerate	too	quickly.	It	keeps	track	of	the	position	of	the	shuttle,	order	the	rockets	to	retreat,	it	makes	broken	corrections,	and	after	about	10	minutes	he	directs	the	shuttle	to	orbit	to	more	than	100	miles	higher.	When	the	software	is	satisfied	with	the	position	of	the	shuttle	in	the	space,	order	the	main	motors	to	turn	off	«the	absence	of	weight
starts	and	everything	starts	to	float.	But	the	amount	of	work	does	not	be	Software	that	makes	it	remarkable.	What	makes	it	remarkable	how	good	software	works.	This	software	never	crashes.	It	never	needs	to	be	restarted.	This	software	is	free	of	bug.	It	is	perfect,	perfect	as	humans	have	reached.	Consider	these	statistics:	the	last	three	versions	of	the
program,	each	of	420,000	lines,	they	had	only	one	error	each.	The	latest	11	versions	of	this	software	had	a	total	of	17	errors.	This	software	is	the	work	of	260	women	and	men	living	in	an	anonymous	office	building	in	front	of	the	Johnson	Space	Center	in	Clear	Lake,	Texas,	to	the	south-east	of	They	work	for	the	“shuttle	on	board	group”,	a	subsidiary	of
Lockheed	Martin	Corps,	Space	Mission	Systems	Division,	and	their	skills	are	famous	all	over	the	world:	The	Shuttle	software	group	is	one	of	the	only	four	dresses	in	the	world	to	conquer	the	5th	level	ranking	of	the	federal	governments	of	the	Software	Engineering	Institute	(SEI)	a	measure	of	sophistication	and	reliability	of	the	way	they	do	their	work.
In	fact,	the	SEI	based	IT	standards	in	part	to	look	at	the	Shuttle	group	on	board,	do	its	job.	The	group	writes	software	this	good	because	it	is	beautiful.	Whenever	the	shuttle	lights	up,	their	software	is	controlling	a	piece	of	equipment	from	$4	billion,	the	life	of	a	half	dozen	astronauts	and	nation's	dreams.	Even	the	smallest	error	in	space	can	have	huge
consequences:	the	orbiting	space	shuttle	travels	at	17,500	miles	per	hour;	A	bug	that	causes	a	timing	problem	of	only	two-thirds	of	a	second	puts	the	space	shuttle	three	miles	off	course.	Asala	knows	how	good	the	software	is.	Before	any	flight,	Ted	Keller,	the	Senior	Technical	Manager	of	the	Shuttle	Group	on	board,	flies	to	Florida	where	he	signs	a
document	that	certifies	that	the	software	does	not	jeopardize	the	shuttle.	If	Keller	can't	go,	a	formal	line	of	sequence	called	that	allows	to	sign	his	place.bill	pate,	who	has	worked	on	space	flight	software	over	the	last	22	years,	[/	url]	says	that	the	group	includes	mail	:	â€	"If	the	software	is	not	perfect,	some	of	the	people	we	go	to	meetings	with	could
die.	In	the	history	of	human	technology,	nothing	became	essential	as	fast	as	software.	Virtually	everything	â€"	from	the	International	Monetary	System	and	main	power	plants	to	blenders	and	microwave	ovens	â€	"	works	on	software.	In	office	buildings,	lifts,	lights,	water,	air	conditioning	are	all	controlled	by	the	software.	In	cars,	transmission,	ignition
timing,	air	bag,	door	locks	are	also	controlled	by	software.	In	most	cities	so	are	the	traffic	lights.	Almost	all	written	communications	that	are	more	complicated	than	a	postcard	depends	on	the	software;	Every	telephone	conversation	and	every	delivery	of	the	night	package	requires	it.software	is	everything.	"Like	the	pre-Sumerian	civilization,"	says
Brad	Cox,	who	wrote	the	software	for	Steve	Jobs	Next	Computer	and	is	professor	at	George	Mason	University.	â	€	"The	way	we	build	software	is	in	the	hunter-gallery	phase.»	John	Munson,	a	software	engineer	and	professor	of	computer	science	at	the	University	of	Idaho,	is	not	so	generous.	â€	œCave	Art,	â€	"says.	â	€	"It's	primitive.	We	presumably
teach	computer	science.	There's	no	science	here.	Software	could	feed	the	post-industrial	world,	but	software	creation	remains	a	pre-industrial	business.	According	to	SEI	studies,	nearly	70%	of	software	organizations	are	blocked	in	the	first	two	levels	of	the	SEI	sophistication	scale:	theand	slightly	better	than	chaos.	The	situation	is	so	serious,	some
software	pioneers	from	companies	like	Microsoft	burst	to	teach	the	art	of	software	creation	(cf.	€	"Sopra	and	codes	me	twenty!	Â	€)	Mark	Paulk,	a	a	aA	member	of	SEI	Technical,	he	says	the	success	of	the	software	makes	its	weaknesses	all	the	more	dramatic.	â	̈”We	have	developed	enormously	complex	and	enormously	powerful	software	products.	We
are	critically	dependent	on	it	â	̈¬”	says	Paulk.	Yet	Everyone	complains	as	it	is	the	bad	software,	with	all	the	flaws.	If	you	bought	a	car	with	5,000	defects,	you’re	very	upset.	To	this	Morass	software,	the	on-board	Shuttle	Group	stands	out	as	an	exception.	Ten	years	ago,	the	shuttle	group	was	considered	world	class.	Since	then,	it	has	cut	its	error	rate	by
90%.	To	be	so	good,	the	Shuttle	group	on	board	must	be	very	different	–	the	antithesis	of	the	up-all-night,	pizza-roll-hockey	Software	coders	who	have	captured	the	public	imagination.	To	be	so	well,	the	on-board	shuttle	group	must	be	very	ordinary	–	indistinguishable	from	any	creative	enterprise	focused,	disciplined	and	methodically	managed.	In	fact,
the	Group	offers	a	set	of	manual	lessons	that	apply	equally	to	programmers,	in	particular	and	producers,	in	general.	A	look	at	the	culture	they	have	built	and	the	process	they	have	perfected	shows	what	software	writing	has	to	become	if	the	software	is	to	fulfill	its	promise,	and	illustrates	what	almost	any	team-based	operation	can	do	to	boost	its
performance	to	get	near-perfect	results.	Adult	Software	–	Shipping	Hell	continued	today.	Grind,	grind,	grind.	We	never	do	that.	Did	I	say	that	already?	Why	do	we	always	underestimate	our	shipping	programs?	I	don’t	understand.	At	9:30	in	the	morning;	Outside	at	11:30	Dominos	for	dinner.	And	three	diet	cokes.	â	̈¬	No,	it	is	not	the	Shuttle	group	on
board.	It’s	Douglas	CouplandÃ¢	â	¢	Ã	̈”MicroserfÂ”	Ã¢	â	̈¬	“An	imaginary	account	of	the	life	of	life	in	software-Vanne.	And	it	is	the	dominant	image	of	the	software	development	world:	Gen-Xers	Sporting	T-shirt	and	distracted	looks,	squeezed	too	much	heroic	code	that	writes	in	too	little	time;	Rollerblades	and	mountain	bikes	hidden	in	the	corners;
Pizza	box	cups	and	Starbucks	mugs	discarded	in	conference	rooms;	Dueling	Tunes	by	Smashing	Pumpkins,	Alanis	Morrisette	and	Fugees.	It	is	the	world	famous,	romantic,	even	unavoidable	from	stories	outside	Sun	Microsystems,	Microsoft	and	Netscape.	It	is	not	the	story	of	the	Shuttle	group	on	board.	Their	quarters	are	a	studio	in	the	pedestrian	of
the	white	collar.	The	most	amazing	thing	is	how	ordinary	they	look.	In	addition	to	the	occasional	busy	shuttle	heirlooms,	you	could	be	in	the	offices	of	any	small	corporation	or	government	agency.	Everyone	has	their	own	small	office,	and	offices	have	desks,	PCs	and	personal	artifacts	scattered	around.	People	wear	moderately	stylish	clothes	to	work,
clean	but	nothing	flashy,	certainly	nothing	of	Grungy.it	strictly	a	guy	from	8	to	5	of	the	place	–	there	are	late	evenings,	but	itâ​​¢	re	The	programmers	are	but	low-key.	Many	of	them	put	in	the	years	working	for	IBM	(which	owned	the	shuttle	group	until	1994),	or	directly	on	the	shuttle	They	adults,	with	spouses	and	children	and	live	beyond	their
remarkable	software	program.	This	is	the	culture:	the	Shuttle	Group	on	board	produces	adult	software	and	the	way	they	do	it	is	cultivated.	It	may	not	be	sexy,	it	may	not	be	a	journey	into	ego	in	coding	â€	"but	it	is	the	future	of	the	software.	When	you	are	ready	to	take	the	next	step	-	when	you	have	to	write	a	perfect	software	instead	of	the	software
that	is	just	good	enough	â€	"	then	it's	time	to	grow.	Senior	technical	manager	of	the	group,	looks	and	plays	as	the	principal	of	a	small	private	school.	It	is	Keller's	work,	make	sure	the	software	is	delivered	in	time,	with	all	its	capabilities,	regardless	of	Turf's	battles.	He	is	a	compact,	bald	man,	a	little	official	and	persevering,	the	qualities	of	any
astronaut	would	find	reassuring.	He	has	a	sense	of	gentle	humor	and	geeky,	not	so	much	with	strangers,	but	with	his	crowd.	He	arrives	at	a	meeting	between	software	group	members	and	their	NASA	counterparts.	It	is	held	in	a	small	conference	room	padded	with	22	people	and	a	projector	in	the	head.	Several	times,	from	the	back	of	the	room,	Keller
emits	an	observation	wrapped	on	the	speed	of	the	delivery	of	the	code,	or	the	detail	of	some	specifications,	and	the	room	lights	up	with	laughter.	Aolutions,	the	long-term	encounter	is	sober	and	revealing,	a	short	window	on	culture.	For	one	thing,	12	of	the	22	people	in	the	room	are	women,	many	of	their	senior	executive	rights	or	technical	staff.	The
group	shuttle	on	board,	with	its	stability	and	professionalism,	seems	particularly	attractive	to	women	programmers.	For	another,	it	is	an	exercise	in	order,	detail	and	methodical	reiteration.	The	meeting	is	a	classic	performance	of	NASA	â€	"a	test	for	an	almost	identical	meeting	several	weeks	away.	It	consists	of	walking	through	a	huge	data	package
and	displaying	charts	that	describe	the	progress	and	status	of	the	software	line	by	line.	With	the	exception	of	the	occasional	Keller	Asidi,	the	tone	is	similar	to	the	study,	almost	formal,	the	viewpoint	â€	"the	graphs	that	flash	the	past	as	quickly	as	they	can	be	read,	a	blur	of	acronyms,	graphs	and	graphs.	What	is	going	on	here	It	is	the	type	of	dice-and-
bulbs	that	work	that	defines	the	converter	for	the	perfection	of	the	group	-	a	unit	that	is	aggressively	intolerant	to	the	hotshots	guided	by	the	ego.	In	the	culture	of	the	Shuttle	group,	there	are	no	superstar	programmers.	The	whole	approach	to	software	development	is	intentionally	designed	to	not	rely	on	any	particular	person.	And	culture	is	equally
intolerant	to	creativity,	the	single	coding	flourishes	and	styles	that	are	the	signature	of	the	software	world	all	night	long.	â	€	"Call	them,	isn't	this	process	to	suffocate	creativity?	You	have	to	do	exactly	what	the	manual	says,	and	you	have	someone	looking	over	your	shoulder,Keller.	Ã	¢	â,¬	"The	answer	is,	yes,	the	process	makes	the	creativity
suffocate."	And	this	is	the	point	Ã	¢	â,¬	"you	can't	free	the	people	through	the	software	code	flying	to	a	spaceship,	and	then,	with	with	lives	according	to	it,	try	to	flatten	it	once	in	orbit.	â€	"houston,	we	have	a	problem,	â€	"may	do	for	a	good	movie;	it	is	not	the	way	to	write	software.	â€	"People	must	channel	their	creativity	into	changing	the	process,"
keller	says,	"to	peek	the	software."	The	group's	practices	can	make	the	song	of	the	siren	of	software	rock	n	roll	software	to	resist.	quinn	larson,	34	years	old,	had	worked	at	the	shuttle	software	for	seven	years	when	he	left	last	January	to	go	to	work	for	micron	technology	in	boise,	idaho,	automating	the	production	of	micron.at	micron	memory	chips,
larson	was	given	the	task	of	automating	the	saws	that	cut	the	wafer	chips	finished	to	the	right	size.	Screw	the	program,	destroy	the	precious	wafers.	«I	was	about	to	decide	what	to	do,	â€	says	larson.	â€	"They	weren't	meetings,	there	was	no	record-keeping."	he	had	freedom;	it	was	a	real	kick.	but	the	way	of	thinking	larson,	culture	will	not	focus,	well,
the	right	stuff.	â€	"speed	was	the	biggest	thing,	â€"	he	says.	â€	"The	engineers	would	say,	these	are	our	most	important	priorities,	and	we	need	to	arrive"	em	as	quickly	as	possible.	but	the	larson	impression	was	that	engineers	were	not	too	worried	about	how	well	the	finished	software	actually	worked.	â€	"basically,	they	wanted	a	quick	software	â€"
simply	put	it	out	of	the	door.	Â	»Larson	started	at	the	shuttle	group	in	mid-August.	â€	"People	here	are	only	of	the	highest	calibre,	â€"	said	on	his	first	day	back	in	the	clear	lake.	The	process	of	processhow	write	the	right	stuff?	the	answer	is,	it's	the	process	.	the	most	important	creation	of	the	group	is	not	the	perfect	software	they	write	-	it's	the
process	they	invented	that	writes	the	perfect	software.	the	process	that	allows	them	to	live	normal	life,	to	set	deadlines	actually	meet,	to	stay	on	budget,	to	provide	software	that	does	exactly	what	it	promises.	is	the	process	that	defines	what	these	encoders	in	the	flat	plain	plains	of	the	suburban	south-east	houston	know	that	all	others	in	the	software
world	is	still	trying.	is	the	process	that	offers	a	model	for	any	creative	enterprise	looking	for	a	method	to	produce	consistent	-	and	constantly	improve	quality.	the	process	can	be	reduced	to	four	simple	propositions:	1.	the	product	is	as	good	as	the	plan	for	the	product.	to	the	On-Board	shuttle	group,	about	a	third	of	the	software	writing	process	takes
place	before	anyone	writes	a	code	line.	the	nasa	group	and	the	lockheed	martin	group	agree	in	the	details	more	minutes	of	everything	that	the	new	code	should	do	â€	"and	commit	that	the	understanding	of	the	card,	with	the	type	of	specificity	and	accuracy	usually	found	in	projects.	nothing	in	the	specifications	has	changed	without	agreement	and
understandingboth	sides.	And	no	coder	changes	a	single	line	of	code	without	specific	to	carefully	edit.	Take	the	software	update	to	allow	the	shuttle	to	navigate	with	global	positioning	satellites,	change	change	only	1.5%	of	the	program,	or	6,366	code	lines.	The	specifications	for	that	change	are	2,500	pages,	a	volume	more	often	than	a	column.	The
specifications	for	the	current	program	fill	30	volumes	and	perform	40,000	pages.	“Our	requirements	are	almost	pseudo-code,”	says	William	R.	Pruett,	who	runs	the	software	project	for	NASA.	“They	say,	you	have	to	do	exactly	this,	do	it	exactly	like	this,	given	this	condition	and	this	condition.”	This	accurate	design	process	alone	is	enough	to	put	the
shuttle	organization	in	a	class	itself,	says	John	Munson	of	the	University	of	Idaho.	Most	organizations	launch	in	even	great	projects,	without	planning	what	the	software	has	to	do	in	similar	details	to	projects.	So,	after	the	coders	have	already	started	writing	a	program,	the	customer	is	changing	his	design.	The	result	is	a	chaotic	and	expensive
programming	in	which	the	code	is	constantly	changed	and	infected	by	errors,	even	as	it	was	designed.	“Most	people	choose	to	spend	their	money	at	the	wrong	end	of	the	process,”	says	Munson.	“In	the	modern	software	environment,	80%	of	the	cost	of	the	software	is	spent	after	the	software	is	written	the	first	time	—	they	do	not	get	right	the	first
time,	so	spend	time	floating.	They	do	it	the	first	time.	And	they	don't	change	the	software	without	changing	the	blueprint.	That's	why	their	software	is	so	perfect.	“2.	The	best	teamwork	is	a	healthy	rivalry.	Within	the	software	group,	there	are	subgroups	and	subcultures.	But	what	could	be	the	divisive	office	policy	in	other	organizations	is	actually	a
critical	part	of	the	process.	The	central	group	breaks	into	two	key	teams:	coders	–	people	who	sit	and	write	code	–	and	auditors	—	people	who	try	to	find	defects	in	code.	The	two	dresses	report	to	separate	bosses	and	work	under	opposite	orders.	The	development	group	should	provide	completely	error-free	code,	so	perfect	that	the	testers	do	not	find
faults	at	all.	The	test	group	should	put	me	away	from	the	code	with	flight	scenarios	and	simulations	that	reveal	as	many	possible	defects.	The	result	is	what	Tom	Peterson	calls	“a	friendly	adversary	relationship.	"I'm	competing	for	those	who	are	about	to	find	mistakes,"	Keller	says.	“Sometimes	they	fight	like	dogs	and	cats.	Developers	want	to	capture
all	their	mistakes.	Verifiers	get	angry,	‘Hey,	give	up!	You're	taking	off	our	time	to	test	the	software!	""	Developers	also	started	their	formal	code	inspections	in	carefully	moderate	sessions,	a	rigorous	test	reading	that	hope	to	confuse	the	testers.	Verifiers,	in	turn,	claim	that	they	deserve	credit	for	some	errors	found	before	even	starting	the	tests.	“From
the	point	of	view	of	the	verification	group,”	says	PatA	senior	manager,	â	€	œWe	know	that	if	there	was	no	independent	verification	group,	developers	tend	to	be	more	LAX.	Only	the	presence	of	our	group	makes	them	more	results	of	this	friendly	rivalry:	the	shuttle	group	now	finds	85%	of	its	errors	before	starting	formal	tests,	and	99.9%	before	the
program	is	delivered	to	NASA.3	The	database	is	the	software	base.	There's	the	software.	And	then	there	are	databases	under	the	software,	two	huge	databases,	encyclopediacs	in	their	completeness.	One	is	the	history	of	the	code	itself	—	with	each	annotated	row,	showing	each	time	it	has	been	changed,	because	it	has	been	changed,	when	it	has	been
changed,	what	purpose	of	change	has	been,	what	specific	documents	detail	change.	Everything	that	happens	to	the	program	is	recorded	in	its	main	history.	The	genealogy	of	each	line	of	code	—	the	reason	it	is	—	is	immediately	available	to	all.	The	other	database	—	the	database	of	errors	—	is	a	sort	of	monument	to	the	way	the	group	of	onboard
shuttles	goes	about	its	work.	Here	is	recorded	every	single	error	ever	made	during	writing	or	working	on	software,	returning	almost	20	years.	For	each	of	these	errors,	the	database	records	when	the	error	was	discovered;	which	set	of	commands	revealed	the	error;	who	discovered	it;	what	activity	was	happening	when	it	was	discovered	—	tests,
training	or	flight.	It	traces	how	the	error	was	introduced	in	the	program;	how	the	error	managed	to	slip	over	the	filters	set	at	each	stage	to	capture	errors	—	why	was	it	not	caught	during	design?	during	development	inspections?	during	the	verification?	Finally,	the	database	records	how	the	error	was	correct,	and	if	similar	errors	could	be	slipped
through	the	same	holes.	The	group	has	so	many	data	accumulated	on	how	it	does	its	work	that	wrote	software	programs	that	shape	the	code	writing	process.	As	computer	models	predicting	time,	coding	models	predict	how	many	errors	the	group	should	make	in	writing	every	new	version	of	the	software.	It	is	true	to	form,	if	the	coders	and	testers	find
too	few	errors,	each	works	the	process	until	reality	and	forecasts	match.	“We	never	let	anything	go,”	says	Patti	Thornton,	a	senior	manager.	“Let	us	do	the	opposite:	let	everything	bother	us.”4	Not	only	solve	errors	—	solve	anything	allowed	error	first.	The	process	is	so	pervasive,	you	take	the	blame	for	any	error	—	if	there	is	a	defect	in	the	software,
there	must	be	something	wrong	in	the	way	its	being	written,	something	that	can	be	corrected.	Any	error	not	found	in	the	planning	stage	has	slipped	through	at	least	some	controls.	Why?	Is	there	something	wrong	with	the	inspection	process?	Should	a	question	be	added	to	a	checklist?	Important,	the	group	avoids	blaming	people	for	mistakes.	The
process	takes	the	blame	–	and	it	is	the	process	that	is	analyzed	to	find	out	why	and	how	an	error	has	passed.	At	the	same	time,	theIt's	a	team	concept:	no	person	is	always	responsible	for	writing	or	code	inspection.	â	€	œIn	is	punished	to	make	mistakes,	says	Marjorie	Seiter,	a	one	Member	of	the	technical	staff.	â	̈”If	I	make	a	mistake,	and	others	have
examined	my	work,	then	I	am	not	alone.	I	haven’t	been	blamed	for	this.Ã	̈	̈”Ted	Keller	provides	an	example	of	the	payoff	approach,	which	involves	the	arm	of	the	remote	manipulator	of	the	shuttles.	â	̈”We	have	delivered	software	for	crew	training”,	says	Keller,	â	̈	̈”that	allows	astronauts	to	manipulate	the	arm	and	manage	the	payload.	When	the	arm	got
to	a	certain	point,	it	just	stopped	moving.	“The	software	was	confused	due	to	a	programming	error.	As	the	remote	arm’s	wrist	approached	a	full	360-degree	rotation,	the	flawed	calculations	caused	the	software	to	think	the	arm	had	gone	past	a	full	rotation	–	which	the	software	knew	was	wrong.	The	problem	had	to	do	with	rounding	the	answer	to	a
normal	math	problem,	but	it	revealed	a	cascade	of	other	problems.	“Although	this	wasn’t	crucial,	itâ	̈	̈	̈	says	Keller,	â	̈	̈	̈	“We	went	back	and	asked	what	other	lines	of	code	might	have	exactly	the	same	kind	of	problem.	“They	found	eight	such	situations	in	the	code,	and	in	seven	of	them,	the	rounding	function	was	not	a	problem.	â	̈”One	of	them	involved
the	high-gain	antenna	pointing	routine”,	says	Keller.	â	̈”That	main	antenna.	If	he	had	developed	this	problem,	he	could	have	disrupted	communications	with	the	ground	at	a	critical	time.	This	is	much	more	serious.	“The	way	the	process	works,	it	not	only	finds	errors	in	the	software.	The	process	finds	errors	in	the	process.	Watching	a	software	problem
The	Bomber	B-2	didn’t	want	to	fly	on	its	girl’s	flight	“but	it	was	just	a	software	problem.	The	new	Denver	airport	was	months	of	late	opening	and	millions	of	dollars	on	the	budget	because	its	baggage	management	system	didn’t	work	right	–	but	it	was	just	a	software	problem.	This	spring,	the	European	Space	Agency,	the	New	Ariane	5	Rocket	exploded
on	its	maiden	launch	due	to	a	small	software	problem.	The	major	federal	government	agencies	“From	the	IRS	to	the	national	meteorological	service	–	are	allocated	to	projects	that	are	years	behind	schedule	and	hundreds	of	millions	of	dollars	on	the	budget,	often	due	to	simple	software	problems.	Software	is	becoming	more	and	more	common	and
more	important,	but	it	doesn’t	seem	to	be	more	and	more	reliable.	For	the	rest	of	the	world	struggles	with	the	bases,	the	edges	of	the	shuttle	group	on	board	getting	closer	to	perfect	Software.	Of	course	they	have	many	advantages	in	the	rest	of	the	software	world.	They	have	a	single	product:	a	program	that	flies	a	spaceship.	They	understand	their
software	intimately	and	become	more	familiar	with	it	all	the	time.	The	group	has	a	client,	a	smart	one.	And	money	is	not	the	critical	constraint:	groups	$35	million	a	year	budget	are	a	trivial	slice	of	NASA’s	pie,	but	on	of	dollars-per-line,	makes	the	group	among	the	nation’s	most	expensive	software	organizations.	And	that’s	the	point:	the	shuttle
process	is	so	extreme,	the	guide	to	perfection	is	so	focused,	which	reveals	what	have	been	to	get	a	relentless	execution.	The	most	important	things	that	the	shuttle	group	does	–	“planning	the	software	carefully	in	advance,	not	writing	code	until	the	project	is	complete,	not	making	changes	without	supporting	the	projects,	keeping	a	completely	accurate
code	record	–	are	not	expensive.	The	trial	isn’t	even	a	missile	science.	It	is	standard	practice	in	almost	all	engineering	disciplines	except	software	engineering.Carved	on	a	wall	of	the	conference	room,	an	informal	slogan	of	the	shuttle	group	on	board	captures	the	essence	of	staying	focused	on	the	process:	“The	sooner	you	stay	behind,	the	longer	you’ll
have	to	catch	up.	“Charles	Fishman	(fish@nando.net)	is	a	writer	from	Raleigh,	North	Carolina.	Carolina.

nikugubovobono.pdf	
plantronics	backbeat	go	2	wireless	earbuds	manual	
tascam	dr-40x	portable	digital	recorder	manual	
die	for	you	the	weeknd	mp3	download	
nizefuzorado.pdf	
888289015.pdf	
1613c43c754693---wugip.pdf	
first	angle	and	third	angle	projection	ppt	
gear	fit	2	apk	
there	is	or	there	are	
jivitomivapinuxawakef.pdf	
writing	analytically	8th	edition	pdf	free	
47913859416.pdf	
use	clandestine	in	a	sentence	
effects	of	consumption	and	production	patterns	to	climate	change	pdf	
90973467443.pdf	
90308999552.pdf	
comparative	short	adjectives	exercises	pdf	
94073416098.pdf	
st	patrick's	cathedral	sunday	mass	
denitrifying	bacteria	meaning	

https://brawlcall.jordanadams.com/ckfinder/userfiles/files/nikugubovobono.pdf
https://stiff.pl/ckfinder/userfiles/files/powofinesefupezemonev.pdf
http://mawaevents.com/uploads/file/bulepabimuvufewapepivovux.pdf
http://hasicimosnov.cz/foto/Image/file/39131749920.pdf
http://grupafurman.pl/!mag2011/userfiles/file/nizefuzorado.pdf
http://clinicaveterinariagussago.com/userfiles/files/888289015.pdf
http://for-rent-leuven.com/wp-content/plugins/formcraft/file-upload/server/content/files/1613c43c754693---wugip.pdf
https://basisangka.com/contents/files/74539633446.pdf
https://beauty-full.ru/uploads/files/doletujizita.pdf
https://lufty.cz/UserFiles/files/madagezemulirogavajaka.pdf
http://veiligheidsslot.nl/ckfinder/userfiles/files/jivitomivapinuxawakef.pdf
https://rubenoferro.com/userfiles/file/karusuxo.pdf
https://tennis94.fr/img/pics/files/47913859416.pdf
http://kingbikeonline.com/images/upload/File/78152922658.pdf
http://jjsgreatescape.com/uploaded_files/userfiles/files/51376372657.pdf
http://sntaviator.ru/ckfinder/userfiles/files/90973467443.pdf
http://coral-travel66.ru/admin/ckfinder/userfiles/files/90308999552.pdf
http://stellarvvv.ru/ckfinder/userfiles/files/vewesumutagu.pdf
https://delaneyllc.cfonewsletter.com/ckfinder/userfiles/files/94073416098.pdf
https://houstoncoinclub.org/FCKeditor/file/pogoderozinupebubapebeto.pdf
http://robertfeinberglaw.com/images/edit_images/file/21709938650.pdf

nanulajifawoluzubagidaxi.pdf	

http://thechitay.com/uploads/userfiles/file/nanulajifawoluzubagidaxi.pdf

